Content

NXA series air circuit breaker
Overview
Product selection
Functions and features
Technical parameters
Intelligent controller
Protection feature
Measurement precision of the intelligent controller
Accessories
Capacity derating and power loss
Dimension of busbar
Installation and wiring
Dimensions and installation
Secondary circuit wiring
Annex
I Tripping curves
II Configuration
III Selection table
IV Earth fault protection
V Source-changeover controller

Circuit breaker description

(1) Trademark
(2) Secondary wiring terminal
(3) Breaking button
(4) Energy-storage handle
5) Making button

6 Nameplate
(7) Energy-storage/release indicator
(8) Breaking/making indicator
(9) QR code
(10) Extraction draw plate (only applicable to draw-out type)

11 "Disconnected" position locking (only applicable to draw-out type)
(12) Racking-handle entry (only applicable to draw-out type)
(13) Position indication (only applicable to draw-out type)
(14) Racking-handle storage (only applicable to draw-out type)
(15) Intelligent controller
(16) Fault-breaking indicator reset button

Circuit breaker

- Frame size (A): 1600, 2000, 3200, 4000
- Breaking capacity: $\mathrm{N}, \mathrm{S}, \mathrm{H}$
- Rated operational voltage Ue (VAC): 380/400/415
- Number of poles: 3P, 4P
- Installation method: draw-out type, fixed type
- Wiring type: horizontal rear connection

Operation conditions and environment adaptability

Operation temperature:
The electrical and mechanical characteristics are applicable to the ambient temperature of $-5^{\circ} \mathrm{C}-+40^{\circ} \mathrm{C}$. NXA can also operate in the ambient temperature of $-45^{\circ} \mathrm{C}-+70^{\circ} \mathrm{C}(\mathrm{M}$ type, A type), $-20^{\circ} \mathrm{C}-+70^{\circ} \mathrm{C}$ (P type, H type, CD-1), the derating factor is seen in P21-22.

- Storage conditions: apply to $-45^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}$
- NXA can resist the following electromagnetic interference
- Overvoltage generated by electromagnetic interference
- Overvoltage caused by environment interference or a power distributing system
- Electrostatic discharge of radio waves (radio, intercom, radar and the like)
- The NXA circuit breaker has successfully passed the test for electromagnetic compatibility specified according to the following standards (EMC) IEC/EN 60947-2
Annex F
The test can guarantee no false tripping and no interference on tripping time
- Protection grade:

Front IP 20, other side IP 00

Intelligent controller

- M type (basic type)

Basic function: Current measurement and display, protective function L S I\&G

- A type (current type)
- Comprising all protective functions of M type
- Unbalanced current protection
- P type (power type)
- Basic function, protective function: L, S, I\&G
- Power measurement functions of current, voltage, power etc.
- LCD display
- H type (harmonic type)
- Comprising all protection and measurement functions of P type
- Harmonic measurement and analysis
- Communication function

Connection

Rear connection
Horizontal connection

- Optional accessories

Interphase barrier

Lock

- Padlocks of "Making" and "Breaking" push button
- Position padlock (for locking the circuit breaker at disconnected position)
- Chassis padlock
- Door interlock: the circuit breaker is arranged at the connected or test part so as to prohibit to open the door

Indication contact

- Standard contact

Making and breaking indication contacts
Fault tripping indication contact
Spring charged indication contact

- Optional accessories

Position indication contact

Remote operation

- Standard accessories

Electric operating mechanism
Closing electromagnet CC
Shunt release ST

- Optional accessories

Standard undervoltage release: UVT
UVT delay unit: UVTD

Source-changeover systems

- Mechanical interlock

1 normal and 1 replacement
2 incoming and 1 busbar

- Source-changeover controller (with adaptor)

1 normal and 1 replacement: mechanical interlock+2A type controller
2 incoming and 1 busbar: mechanical interlock+3A type controller

Product selection

NXA series air circuit breaker

Frame size	Rated current Breaking capacity	400	630	800	1000	1250	1600	2000	2500	3200	3600	4000
1600A	N	■	\square	\square	\square	\square	\square					
	H	■	\square	■	■	■	\square					
2000A	N		■	■	■	■	\square	\square				
	H		■	■	■	■	\square	■				
3200A	N						\square	\square	-	\square		
	H						-	■	■	■		
4000A	N									■	■	■
	H									-	■	-

Model definition and description

Note: ${ }^{11}$ Intelligent controller PT/HT type. The basic functions are the same with P/H type. T refers to the internal temperature measurement function.
${ }^{2}$ Manual operation does not contain motor-driven mechanism, closing electromagnet and shunt release. Motor operation contains all standard accessories of remote operation.
${ }^{3}$ Auxiliary working voltage of the intelligent controller: corresponding power modules is required if DC220V or DC110V is selected.
${ }^{4}$) NXA16N10-AD3-AC230: frame size is 1600A, N type breaking capacity, rated current is $1000 \mathrm{~A}, \mathrm{~A}$ type intelligent controller, draw-out type and 3 poles, control voltage is AC 230 V motor operation.

Model definition and description-intelligent controller

Model definition and description-accessories

NXA	16	CC	230VAC
\dagger	\dagger	\dagger	\dagger
Code of product	Frame size	Code of accessories	Code of rated voltage
	16:1600A	CC: Closed electromagnet	230VAC: AC230V
	20:2000A	ST: Shunt tripper	400VAC: AC400V
	32:3200A	UVT: Undervoltage tripper	110VDC: DC110V
	40:4000A	MO: Motor	220VDC: DC220V
	20/40:2000A-4000A	UVTD:UVT delay unit	
	20/32:2000A-3200A		

Model definition and description-accessories

NXA	16	OF	C04
\dagger	\dagger	\dagger	\dagger
Code of product	Frame size	Code of accessories	Specification of accessories
	16:1600A		C04: Four groups of contacts
	20:2000A		C05: Five groups of contacts
	32:3200A		C06: Six groups of contacts
	40:4000A		N3: Three normally open and three normally closed
	20/40:2000A-4000A		N4: Four normally open and four normally closed
	20/32:2000A-3200A		N5: Five normally open and five normally closed
			1S1S: One lock and one key
		KL: Key lock	2S1S: Two locks and one key
			3S2S: Three locks and two keys
		FCDP: Fixed type door frame	
		DCDP: Draw-out type door frame	
		FD: Fixed type interphased partition	
		DD: Draw-out type interphased partition	
		CE-CD-CT: Position signal	
		ILK2: Mechanical interlocking two interlocking steel cables	

Functions and features

Technical parameters

Features

Number of poles	$3 / 4$
Rated operational voltage $\mathrm{Ue}(\mathrm{V})$	$380 / 400 / 415$
Rated insulation voltage Ui (V)	1000
Rated impulse withstand voltage Uimp (kV)	12
Rated frequency Hz	$50 / 60$
Flashover distance (mm)	0
Applicable to isolation	IEC/EN 60947-2
Pollution grade	IEC 60664-1

Frame size
Rated current (A)

Rated current of the fourth pole (A)		
Type of the circuit breaker	Icu	$380 / 400 / 415 \mathrm{~V}$
Rated ultimate short circuit breaking capacity (kA rms) VAC $50 / 60 \mathrm{~Hz}$	Ics	$380 / 400 / 415 \mathrm{~V}$
Rated service short circuit breaking capacity (kA rms) VAC $50 / 60 \mathrm{~Hz}$	Icw	$1 \mathrm{~s}, 380 / 400 / 415 \mathrm{~V}$
Utilization category	Icm	$380 / 400 / 415 \mathrm{~V}$
Rated short-time withstand current (kA rms) VAC $50 / 60 \mathrm{~Hz}$		
Closed capacity (kA peak) VAC $50 / 60 \mathrm{~Hz}$		

Making current tripping protection function (MCR kA rms)
Breaking time (ms)
Closing time (ms)
Installation, connection and service life

Service life C/O cycle	Mechanical	Without maintenance
	Electrical	Without maintenance
Connection	Horizontal	
Size (width \times depth \times height)	Fixed type	3 P
		4 P
	Draw-out type	3 P

Intelligent controller

M type intelligent controller (Basic type)

Protection
All the protective threshold and time delay are set by a dial switch

- Overload protection
- Ture RMS long-time-delay protection
- Thermal memory: heat accumulation before and after tripping
- Short circuit protection
- Short-time delay (RMS) and instantaneous protection
- Optional four steps time-delay setting
- Earth fault protection

Optional four steps time-delay setting

- Neutral line overcurrent protection (4P)

The neutral protective threshold can be adjusted to $50 \%, 100 \%$ and OFF

- Test function

Simulating 6IR test current for test tripping

- Tripping record function
- Ampere meter

Measure the real and effective value (RMS) of
current with the precision of 2% for 40% to 150% in setting

A type intelligent controller (Current type)

Protection
Setting all the protective threshold values and a dial switch for time delay. The setting values can be displayed on LCD display window.

- Overload protection
- Ture RMS long-time-delay protection
- Thermal memory: heat accumulation before and after tripping
- Short circuit protection
- Short-time delay (RMS) and instantaneous protection
- Optional four steps time-delay setting
- Earth fault protection

Optional four steps time-delay setting

- Neutral line overcurrent protection (4P)

The neutral protective threshold can be adjusted to $50 \%, 100 \%$ and OFF

- Unbalanced current protection

Protecting phase failure or three phase unbalance

- Test function

Simulating 6IR test current for test tripping

Tripping record function

Ampere meter
Measure the real and effective value (RMS) of
current with the precision of 2% for 40% to 150% in setting

P type intelligent controller (Power type)

Protection
Setting all protective threshold values and time-delay

- Protection functions of all A type control units are included
- Earth current protection function (Optional)

External transformer and protection module are configured

- Advanced protection function
- Unbalanced voltage protection
- Overvoltage and undervoltage protection
- Overfrequency and underfrequency protection
- Phase sequence protection
- Reverse power protection function
- Required value protection function

The required value of the real and effective value of each current is calculated within a measurement window. When the required value is off limit, the protection action is carried out. The setting of a sliding time window is in the menu of "setting of a measurement meter"
-A-phase maximal required current value,
-B-phase maximal required current value,
C-phase maximal required current value,

- N -phase maximal required current value are respectively set for each circumstance of the required value protection without being affected by the setting of the neutral line protection.
- Extended function
- Self-diagnosis by the intelligent controller
- Operation times/fault tripping/alarming/deflection recording function provides the latest eight times of recording
- Main contact abrasion display function for evaluating the contact abrasion degree according to mechanical life, electrical services and breaking capacities of different frames.
- Internal clock function
- A Mini-USB interface is connected with a PC to achieve the functions of protection setting, fault record downloading, whole power quantity detection and parameter reading of a circuit breaker.
- "test" push button
- Electric energy meter
- Current measurement
- Voltage measurement
- Frequency measurement
- Required value measurement
- Power (active power, reactive power and apparent) measurement
- Electric energy (active power, reactive power and apparent) measurement
- Power factor measurement
- Busbar temperature measurement (Optional)

The temperature of the busbar is measured by a temperature transformer in the busbar, and can be display on a LCD screen in real time. Customers can set the temperature threshold value and set the alarm.

- LCD three-color backlight

Green stands for normal running, yellow stands for alarming and red stands for tripping.

H type intelligent controller (Harmonic wave type)

Protection
Setting all protective threshold values and a button for time-delay
Besides the protective extended function of all P type control units,
H type control unit also comprises:

- Load monitoring function
- Zone selective interlock (ZSI)
- Communication function

Modbus-RTU communication protocol

- Input/output function
- 2DI, 2DO or 4DO
- DI signal: AC230V (Standard configuration, and others can be selected);
AC400V; DC110V; DC220V; DC24V
- DO needs to be configured with a power supply module (24VDC output) and a relay module.
Harmonic analysis function
- Measurement of the fundamental wave current, the fundamental wave line voltage, the fundamental wave phase voltage, the fundamental wave power and each 3-31 odd harmonic wave current percentage (HRIh), the harmonic voltage percentage (HRUh), the total harmonic wave current distortion rate (THDi, thdi) and the total harmonic wave voltage distortion rate (THDu, thdu).
- The harmonic wave percentage(HR) refers to the ratio of root-mean-square value of the Nth harmonic wave component contained in periodic alternative current quantity to the root-mean-square value of the fundamental wave component, and is expressed in percentage.

Protection features

The protection features of the intelligent controller comprise inverse time characteristic and constant time characteristic. When the fault current exceeds the set value of the inverse time limit, the controller performs constant time protection.
The inverse time limit corresponds to the feature curve I ${ }^{2}$ t.

Overload long-time-delay protection feature

Overload long-time-delay protection action threshold value
<1.05 IR : >2 h, no action
>1.3 IR : <1 h, action

Ir current setting value range: $0.4 \mathrm{In}, 0.5 \mathrm{In}, 0.6 \mathrm{In}, 0.7 \mathrm{In}, 0.8 \mathrm{In}, 0.9 \mathrm{In}, 1.0 \mathrm{In}+$ OFF
Inverse time limit action feature: $I^{2} t$, wherein $t=(6 / N)^{2} \star t_{R}$

Setting Multiple of Current	Action Time							
$1.5 \mathrm{I}_{\mathrm{R}}$	16	32	64	128	192	256	320	384
$2 \mathrm{I}_{\mathrm{R}}$	9	18	36	72	108	144	180	216
$6 \mathrm{I}_{\text {R }}$	1	2	4	8	12	16	20	24

Note: N --- the multiple I/IR obtained by dividing failure current by set current
t--- time delay action of the failure action
t_{R}--- long-time-delay set value
Allowed error of the action time $\pm 15 \%$

Short circuit short-time-delay protection feature

Short circuit short-time-delay protection action threshold value
<0.85 Isd: no action
>1.15 Isd: action
Isd current set value range: $2 \mathrm{I}_{\mathrm{R}}, 3 \mathrm{I}_{\mathrm{R}}, 4 \mathrm{I}_{R^{\prime}}, 5 \mathrm{I}_{R^{\prime}} 6 \mathrm{I}_{R}, 8 \mathrm{I}_{\mathrm{R}}, 10 \mathrm{I}_{R}+\mathrm{OFF}$ (MAX 50kA)

Current	Action time		Remark
Isd $<$ I $\leqslant 10 \mathrm{I}_{\text {R }}$	Inverse time limit	Action feature $\mathrm{I}^{2} \mathrm{t}=\left(10 \mathrm{I}_{R}\right)^{2}$ tsd	P, H
		Setting time s $0.1,0.2,0.3,0.4$	
$1 \geqslant 1.1$ Isd	Constant time limit	Setting time s 0.1, 0.2, 0.3, 0.4	M, A, P, H
		Minimum s $0.06,0.16,0.255,0.34$	
		Maximum s $0.14,0.24,0.345,0.46$	
	Return time	$0.05,0.14,0.25,0.33$	

Note: Isd---short-time-delay current set value
I--- failure current value
IR--- long-time-delay set value
t--- failure action time-delay time
tsd---short-time-delay inverse time limit set value Permissible error of action time $\pm 15 \%$

Short circuit instantaneous protection features

Short circuit instantaneous protection action threshold value
$<0.85 \mathrm{II}$: no action
$>1.15 \mathrm{II}$: action
The current setting value of instantaneous action: 2In, 4In, 6In, 8In, 10In, 12In, 15In+OFF(NXA40 MAX50kA)
Note: action time $\leqslant 50 \mathrm{~ms}$

Earth fault protection action features

Earth fault protection action threshold value
<0.9Ig: no action
>1.1Ig: action

Current setting value	A	B		C	D	E F		G		OFF
NXA16, 20	0.2In	0.3In		0.4In	$0.51 n$	0.6In	0.8In	In		
NXA32, 40, 63	500A	640A		800A	960A	1040A	1120A	1200A		
tg(s)	Inverse time limit	Action features								
		$\mathrm{t}=\frac{(\mathrm{Ig})^{2}}{\mathrm{I}^{2}} \times \mathrm{tg}$								
Constant time limit	Setting time (s)		0.1		0.2		0.3		0.4	
	Minimum (s)		0.06		0.16		0.255		0.34	
	Maximal (s)		0.14		0.24		0.345		0.46	
	Return time		0.05		0.14		0.25		0.33	

Note: Ig --- earth fault protection setting value. When $\mathrm{In} \geqslant 1250 \mathrm{~A}, \mathrm{Ig}=1200 \mathrm{~A}$. When $\mathrm{In}<1250 \mathrm{~A}, \mathrm{Ig}=\mathrm{In}$. When $\mathrm{In} \geqslant 1250 \mathrm{~A}, \mathrm{Ig}$ MAX=1200A
I --- failure current value
t --- failure action time-delay time
tg --- earthing inverse time limit set value
The permissible error of the inverse time limit action time: $\pm 15 \%$

Functions and features

Measurement precision of the intelligent controller

Current measurement	
Measurement range	Ia, Ib, Ic and IN are not less than 15In (rated current of the circuit breaker)
Below 0.1In: the measurement is inaccurate	
Measurement precision	0.1In-0.4In: the accuracy will be changed linearly from 5% to 2%
	$0.4 \mathrm{In}-1.5 \mathrm{In}$: the accuracy is 2%
	$>1.5 \mathrm{In}$: the accuracy will be changed linearly from 2% to 15%
	The measurement accuracy of the earthing current is 10%

Voltage measurement	
Measurement range	Line voltage: $0 \mathrm{~V} \sim 1300 \mathrm{~V}$
	Phase voltage: $0 \mathrm{~V} \sim 900 \mathrm{~V}$
Measurement precision	Error: $\pm 1 \%$

Frequency	
Measurement range	40HZ 70 HZ
Measurement precision	Error: $\pm 0.1 \mathrm{HZ}$
Power	
Measurement mode	The effective value mode
Measurement content	3P type: total active power, total reactive power and total apparent power
	4 P type: phase splitting active power, phase splitting reactive power, phase splitting apparent power, total active power, total reactive power, total apparent power
Measurement power	Active power: -32768KW ~ + 32767KW
	Reactive power: -32768Kvar~ + 32767Kvar
	Apparent power: OKVA~65535KVA
	Error: $\pm 2.5 \%$

Power factor	
Measurement content	$3 P$ type: total power factor
	$4 P$ type: phase splitting power factor
Me	$-1.00 \sim+1.00$

Electric energy	
	Input reactive electric energy EQin, output reactive electric energy EQout
	Input active electric energy EPin, output active electric energy EPout
Measurement range	Total active electric energy EPtotal, total reactive electric energy EQtotal, total apparent electric energy EStotal
	Active electric energy: $-32768 \mathrm{KWh} \sim+32767 \mathrm{KWh}$
	Reactive electric energy: $-32768 \mathrm{Kvarh} \sim+32767 \mathrm{Kvarh}$
	Apparent electric energy: 0~65535KVAh
Measurement precision	Error $\pm 2.5 \%$

Harmonic wave measurement	
Fundamental wave measurement	Current: Ia, Ib, Ic
	Voltage: Uab, Ubc, Uca
	THD: the total distortion rate of the harmonic wave relatively to the fundamental wave
Amplitude wave spectrum of harmonic wave	Thd: the total distortion rate of the harmonic wave relatively to the effective value
Measurement precision of control unit	The controller can display FFT amplitude of odd harmonic wave from 3 to 3lin percentage

Note

Accessories: locks

Pushbutton lock

The pushbutton lock is to lock the circuit breaker by a transperant conver blocks so as to prevent the breaking button and the making button of the circuit breaker from misoperation and guarantee the reliable running of the circuit breaker.

Body lock

- A key lock includes four types. The latter two are applied to 2 input and 1 connect power distribution system:
- Random lock
- One lock and one key
- Two locks and one key
- Three locks and two keys

Safety shutters padlock

- The padlock is prepared by users.
when a circuit breaker body is at the disconnected or test part,
the safety shutters automatically block access to the disconnecting contact cluster.

"Disconnected" position padlock

After the chassis and body are locked at "Disconnected" position by a padlock, the racking-handle cannot be inserted into racking-handle entry, and then the position of the body cannot be changed.

Door interlock

- Circuit breaker state door interlock

A cabinet door is prohibited to be opened when the circuit breaker is closed.
The cabinet door is allowed to be opened when the circuit breaker is disconnected.

- Circuit breaker position door interlock

The cabinet door is prohibited to be opened when the circuit breaker is at the connected and test part. The cabinet door is allowed to be opened when the circuit breaker is at the disconnected position.

Functions and features

Accessories: indication contacts

ON/OFF indication contacts		
Standard configuration	4 CO	
Breaking capacity	Current (A) / Voltage (V)	
Utilization category	VAC(AC-15)	$1.3 / 240,0.75 / 415$
	VDC(DC-13)	$0.55 / 220,0.27 / 110$

"Connected", "disconnected" and "test" position indication contact		
Standard configuration 1 CO/3 Breaking capacity Current (A) / Voltage (V) Utilization category VAC(AC-15) $1.3 / 240,0.75 / 415$ VDC(DC-13) $0.55 / 220,0.27 / 110$		

Alarming contact		
Standard configuration		1CO
Breaking capacity		Current (A) / Voltage (V)
Utilization category	VAC(AC-15)	1.3/240, 0.75/415
	VDC(DC-13)	0.55/220, 0.27/110

Spring charging indication contact
Standard configuration 1 NO Breaking capacity Current (A)/ Voltage (V) Utilization category VAC(AC-15) $1.3 / 240,0.75 / 415$ VDC(DC-13) $0.55 / 220,0.27 / 110$

Note: ${ }^{1)}$ CO refers to a switch contact, and a one-normally-open and one-normally-closed contact is matched with a common terminal.
${ }^{2)}$ NO refers to a normally open contact. NC refers to a normally closed contact.

Functions and features

- Motor-driven mechanism (MO) (Standard configuration)

When a circuit breaker is switched on, an motor operation mechanism stores energy automatically, so that when the circuit breaker is tripped, the device can switch on instantly. An energy-storage handle as spare when no auxiliary power supply is provided.

Characteristics		
Power supply	VAC 50/60HZ	$220 / 230 / 240,380 / 400 / 415$
	VDC	110,220
Operation threshold	$0.85-1.1 \mathrm{Us}$	
Frame size: power loss (VA or W)	$16: 75 \mathrm{~W} ; 20: 85 \mathrm{~W} ; 32: 110 \mathrm{~W} ; 40: 10 \mathrm{~W}$	
Motor overcurrent	$\leqslant 1 \mathrm{~min}$	
Charging time	$\leqslant 7 \mathrm{~s}$	
Operation frequency	$\leqslant 2$ times/min	

- Voltage coils (CC \&ST) (Standard configuration)
- Closing coil (CC)

The CC closing coil remotely closes the circuit breaker if the spring mechanism is charged.

- Shunt release (ST)

The ST release instantaneously opens the circuit breaker when energised.

Characteristics		CC	ST
Power supply	VAC 50/60HZ	220/230/240	220/230/240
		380/400/415	380/400/415
	VDC	220, 110	220, 110
Operational voltage		0.85-1.1Us	0.7-1.1Us
Frame size: power loss (VA or W)	AC	16: 400VA; 20~40: 400VA	16: 400VA; 20~40: 400VA
	DC	16: 380W; 20~40: 130W	16: 380W; 20~40: 130W
Circuit breaker response time at Un		$40 \mathrm{~ms}-60 \mathrm{~ms}$	$30 \mathrm{~ms}-50 \mathrm{~ms}$

- Undervoltage release (UVT)

When the power supply voltage drops to be a value between $35 \%-70 \%$, the release coil causes the circuit breaker to trip instantly. If there is no supply on the release, it is impossible to close the circuit breaker, either manually or electrically. Circuit breaker closing is enabled again when the supply voltage of the release returns to 85% of its rated value.

Characteristics			
Power supply	VAC 50/60Hz		220/230/240, 380/400/415
	VDC		-
Operation threshold	Open	0.35-0.7Ue	0.35-0.7Ue
	Closed	0.85 Ue	0.85-1.1Ue
Frame size: power loss (W)			16: 220W/15W; 20~40: 220W/13W

Note: actuation/maintaining.

- UVT delay unit (UVTD)

To eliminate the false tripping caused by short-time voltage drop, UVT action time delay is required. The function is realized by additionally increasing a time delay unit for UVT.

Characteristics		
Power supply	VAC $50 / 60 \mathrm{HZ}$	
Operation threshold	Open	$0.35-0.7 \mathrm{Ue}$
	Closed	0.85 Ue
	$16: 20 \mathrm{VA} ; 20 \sim 40: 48 \mathrm{VA}$	
Adjustable time	$16: 0.5 \mathrm{~s}, 1 \mathrm{~s}, 2 \mathrm{~s}, 3 \mathrm{~s}, 5 \mathrm{~s} ; 20 \sim 40: 1 \mathrm{~s}, 3 \mathrm{~s}, 5 \mathrm{~s}$	

Functions and features

Capacity derating and power loss

Temperature capacity derating table of the fixed type circuit breaker

1600A frame

Ambient temperature Connection mode	400A		630A		800A		1000A		1250A		1600A	
	Horizontal	Vertical										
40°	-	-	-	-	-	-	-	-	-	-	-	-
45°	-	-	-	-	-	-	-	-	-	-	-	-
50°	-	-	-	-	-	-	-	-	-	-	1550	1600
55°	-	-	-	-	-	-	-	-	1150	1200	1500	1550
60°	-	-	550	580	-	-	-	-	1050	1100	1450	1500

2000A frame

Ambient temperature Connection mode	630A		800A		1000A		1250A		1600A		2000A	
	Horizontal	Vertical										
40°	-	-	-	-	-	-	-	-	-	-	-	-
45°	-	-	-	-	-	-	-	-	1550	-	1900	-
50°	-	-	-	-	-	-	-	-	1500	1550	1850	1900
55°	-	-	-	-	-	-	-	-	1400	1450	1800	1800
60°	-	-	-	-	-	-	-	-	1300	1350	1700	1700

3200A frame

Ambient temperature Connection mode	1600A		2000A		2500A		3200A	
	Horizontal	Vertical	Horizontal	Vertical	Horizontal	Vertical	Horizontal	Vertical
40°	-	-	-	-	-	-	-	-
45°	-	-	-	-	-	-	-	-
50°	-	-	-	-	-	-	3100	-
55°	-	-	-	-	2450	-	3000	3050
60°	-	-	-	-	2350	2400	2900	2950

4000A frame

Ambient temperature Connection mode	3200A		3600A		4000A	
	Horizontal	Vertical	Horizontal	Vertical	Horizontal	Vertical
40°	-	-	-	-	-	-
45°	3100	-	-	-	3800	3850
50°	3000	-	-	-	3600	3650
55°	3000	3050	3400	3450	3400	3450
60°	2900	2900	3200	3250	3200	3250

Note: "-" refers to no capacity derating.

Temperature capacity derating table of the draw-out type circuit breaker

1600A frame

Ambient temperature	400A		630A		800A		1000A		1250A		1600A	
Connection mode	Horizontal	Vertical										
40°	-	-	-	-	-	-	-	-	-	-	-	-
45°	-	-	-	-	-	-	-	-	-	-	1550	-
50°	-	-	-	-	-	-	-	-	1150	1200	1500	1550
55°	-	-	550	580	-	-	-	-	1050	1100	1450	1500
60°	-	-	500	530	-	-	950	-	950	1000	1400	1450

2000A frame

Ambient temperature Connection mode	630A		800A		1000A		1250A		1600A		2000A	
	Horizontal	Vertical										
40°	-	-	-	-	-	-	-	-	-	-	-	-
45°	-	-	-	-	-	-	-	-	1500	-	1850	1900
50°	-	-	-	-	-	-	-	-	1400	1500	1750	1850
55°	-	-	-	-	-	-	-	-	1300	1400	1650	1750
60°	600	-	-	-	-	-	1200	-	1200	1300	1550	1650

3200A frame

Ambient temperature Connection mode	1600A		2000A		2500A		3200A	
	Horizontal	Vertical	Horizontal	Vertical	Horizontal	Vertical	Horizontal	Vertical
40°	-	-	-	-	-	-	-	-
45°	-	-	-	-	2450	-	3100	-
50°	-	-	-	-	2400	2450	3000	3100
55°	-	-	-	-	2350	2400	2900	3000
60°	-	-	-	-	2300	2350	2800	2900

4000A frame

Ambient temperature Connection mode	3200A		3600A		4000A	
	Horizontal	Vertical	Horizontal	Vertical	Horizontal	Vertical
40°	-	-	-	-	-	-
45°	3100	-	-	-	3800	3850
50°	3000	3100	-	-	3600	3650
55°	2900	3000	3400	3450	3400	3450
60°	2800	2900	3200	3250	3200	3250

Altitude capacity derating factor

Altitude height (m)		2000	3000	4000	5000
Rated impulse withstand voltage (kV)	Uimp	12	10	8.57	7.5
Average insulation grade (V)	Ui	1000	833	714	625
Maximal operational voltage (V) 50/60HZ	Ue	415	415	415	415
Average heat operational current(40) ${ }^{\circ} \mathrm{C}$		1.0	0.97	0.93	0.89

Power loss and input and output resistance

Power loss is the power loss of each pole measured at $\mathrm{In}, 50 / 60 \mathrm{~Hz}$. The input/output resistance is the DC resistance value of each pole at the cold state.

Frame size	Rated current (A)	Draw-out type		Fixed type (W)	
		Power loss (W)	Input/output resistance ($\mu \mathrm{ohm}$)	Power loss (W)	Input/output resistance ($\mu \mathrm{ohm}$)
1600A	400	25.6	63.6	13.0	32.4
	630	63.6	63.6	32.4	32.4
	800	83.3	51.6	45.5	28.2
	1000	130.1	51.6	71.1	28.2
	1250	203.4	51.6	111.1	28.2
	1600	404.7	34.2	213.0	18.0
2000A	630	64.9	49.2	29.3	22.2
	800	104.7	49.2	47.3	22.2
	1000	163.6	49.2	73.8	22.2
	1250	199.56	38.4	99.2	19.1
	1600	326.95	38.4	162.5	19.1
	2000	431.0	32.4	226.7	17.0
3200A	1600	233.2	16.6	110.2	7.8
	2000	364.3	16.6	172.1	7.8
	2500	569.3	16.6	269.0	7.8
	3200	878.6	15.6	378.5	6.8
4000A	3200	625.3	14.1	344.4	7.8
	3600	992.6	17.7	392.3	7.0
	4000	1225.44	17.7	484.3	7.0

Dimension of busbar

Bolt configuration

Type of bolt	Application	Fastening busbar
16: M10	Fastening busbar	(49~59) $\mathrm{N} \cdot \mathrm{m}$
20~63: M12	Fastening busbar	(86~103)N.m
16~63: M3	Fastening secondary connector	(0.5~0.7) N.m

Hole size and installation twisting moment of busbar

| Drilling $\Phi(\mathrm{mm})$ | Diameter of bolt | Fastening twisting moment |
| :--- | :--- | :--- | :--- |
| $16: \Phi 11$ | M10 | $(49 \sim 59) \mathrm{N} \cdot \mathrm{m}$ |
| $20 \sim 63: \Phi 13$ | M12 | $(86 \sim 103) \mathrm{N} \cdot \mathrm{m}$ |

Connection busbar specification reference under different temperature

Maximum permissible temperature of busbar: $100^{\circ} \mathrm{C}$
The material of busbar is bare copper

Frame size	Rated current (A)	Ambient temperature(-5~40) ${ }^{\circ} \mathrm{C}$				Ambient temperature $50^{\circ} \mathrm{C}$				Ambient temperature $60^{\circ} \mathrm{C}$			
		5 mm thick busbar		10 mm thick busbar		5 mm thick busbar		10 mm thick busbar		5 mm thick busbar		10 mm thick busbar	
		Number of pieces	Specification										
1600A	400	2	30*5	1	30*10	2	30*5	1	30*10	2	$30 * 5$	1	30*10
	630	2	40*5	1	40*10	2	40*5	1	40*10	2	40*5	1	$40 * 10$
	800	2	50*5	1	50*10	2	50*5	1	50*10	2	50*5	1	50*10
	1000	3	50*5	2	40*10	3	50*5	2	$40 * 10$	3	50*5	2	$40 * 10$
	1250	4	40*5	2	$40 * 10$	4	50*5	2	50*10	4	50*5	2	50*10
	1600	4	50*5	2	50*10	4	50*5	2	50*10	4	50*5	2	$50 * 10$
2000A	630	2	40*5	1	40*10	2	50*5	1	50*10	2	60*5	1	60*10
	800	2	50*5	1	50*10	2	50*5	1	50*10	2	$60 * 5$	1	$60 * 10$
	1000	3	50*5	2	40*10	3	50*5	2	$40 * 10$	3	60*5	2	50*10
	1250	3	60*5	2	50*10	3	60*5	2	$50 * 10$	3	60*5	2	50*10
	1600	4	60*5	2	60*10	4	$60 * 5$	2	60*10	4	60*5	2	60*10
	2000	6	60*5	3	60*10	6	60*5	3	60*10	6	$60 * 5$	3	$60 * 10$
3200A	1600	2	100*5	1	100*10	2	100*5	1	100*10	2	100*5	1	100*10
	2000	4	100*5	2	100*10	4	100*5	2	100*10	4	100*5	2	100*10
	2500	4	100*5	2	100*10	4	100*5	2	100*10	4	100*5	2	100*10
	3200	8	$100 * 5$	4	100*10	8	100*5	4	100*10	8	100*5	4	100*10
4000A	3200	8	100*5	4	100*10	8	100*5	4	100*10	8	100*5	4	100*10
	3600	7	$120 * 5$	3	120*12	7	120*5	3	120*12	7	$120 * 5$	3	120*12
	4000	8	120*5	4	120*10	8	125*5	4	125*10	8	125*5	4	125*10

Note:
a. When a copper bar selected by users is not matched with a wiring terminal of the circuit breaker, extended busbar is required to be designed to transfer, and is designed by the users of their own. The cross section of the extended busbar cannot be less than the requirement in the table above. The interval among the extended busbar is not less than the interval among wiring terminals of the circuit breaker.
b. After the busbar recommended in the table above is installed, the electric clearance between adjacent phases of the circuit breaker is not less than 18 mm .
c. Electrical elements are used for three-phase rectification and high-frequency inversion, such as a high-frequency induction heating furnace (medium-frequency furnace steelmaking equipment), a solid high-frequency welding machine (such as an embedded arc electric welding machine), vacuum heating smelting equipment (such as a monocrystalline silicon growth furnace), in load equipment by controlled silicon. When a circuit breaker is selected, the influence on the circuit breaker by higher order harmonic component generated by controlled silicon is required to be considered besides the influences by the environment temperature and altitude height. At the same time, capacity derating is required, and the capacity coefficient ($0.5-0.8$) is recommended.
d. The electric clearance of fastening bolts of upper and lower busbar needs to be not less than 20 mm after the installation of the busbar by users.
e. After the installation of the circuit breaker, the safety clearance among electrified bodies with different electric potential and between the electrified bodies and the ground are not less than 18 mm .

Installation and wiring

Dimensions and installation

1600A fixed type

Hole size

Hole size of the base

Schematic diagram of the overall size of the bottom surface and the installation hole pitch

H	L	L1	Remark
5	237	254	In=400A~630A Fixed type, three pole
8	237	254	In=800A~1250A Fixed type, three pole
20	237	254	In=1600A Fixed type, three pole
5	307	324	In=400A~630A Fixed type, four pole
8	307	324	In=800A~1250A Fixed type, four pole
20	307	324	In=1600A Fixed type, four pole

Installation and wiring

1600A draw-out type

Hole size
Hole size of the base

Schematic diagram of the overall size of the bottom surface and the installation hole pitch

\mathbf{H}	L	L1	Remark
5	287	308	In=400A~630A Three pole
8	287	308	In=800A~1250A Three pole
20	287	308	In=1600A Three pole
5	357	378	In=400A~630A Four pole
8	357	378	In=800A~1250A Four pole
20	357	378	In=1600A Four pole

Horizontal connection

Installation and wiring

2000A fixed type

Front view
Side view

Hole size

Horizontal connection

Installation and wiring

2000A draw-out type

Front view

Side view

Hole size

Horizontal connection

Installation and wiring

3200A fixed type

Front view
Side view

Hole size

Hole size of the base
!. Datum Y

Schematic diagram of the overall size of the bottom surface and the installation hole pitch

Hole of the panel

H	Remark
20	In=1600A~2500A
30	In=3200A

Horizontal connection

Horizontal onnection (default configuration)

Installation and wiring

3200A draw-out type(Default configuration)

Front view
Side view

3200A draw-out type(Horizontal short busbar)

Front view
Side view

Installation and wiring

Hole size

Hole size of the base

Hole size of a panel

Hole of the panel

H0	H1	Remark
20	0	In=1600A~2500A
30	$10^{+0.1}$	In=3200A

Horizontal connection

Installation and wiring

4000A fixed type

Front view Side view

Hole size

Hole size of the base

Schematic diagram of the overall size of the bottom surface and the installation hole pitch

Hole size of a panel

Ratio 1:2 Hole size of the panel of the fixed type circuit breaker

H	Remark
16	In=3200A
20	In=3600A $\sim 4000 \mathrm{~A}$

Horizontal connection

Installation and wiring

4000A draw-out type
Front view
Side view

Hole size

Hole size of the base

Schematic diagram of the overall size of the
bottom surface and the installation hole pitch

In $=3600 \sim 4000 \mathrm{~A}$

H	Remark
26	In=3200A
30	In $=3600 \sim 4000 \mathrm{~A}$

Hole size of a panel

Ratio 1:1 Hole size of the panel of the draw-out type circuit breaker

Horizontal connection

Installation and wiring

External transformer (Neutral CT) (3P+N mode)

The installation overall dimension of an external N -phase transformer is as below when the controller is of $3 \mathrm{P}+\mathrm{N}$ type. The transformer is provided by the manufacturer. A connection copper bar and an installation support are manufactured by users.

1-Wiring panel 2-Busbar 3-Fixation panel 4 -Transformer

Frame size	a	b	c	d
1600	45	20	40	88
2000	60	20	34	89
3200	80	20	35	110
4000	120	20	16	58

Undervoltage time delay controller which is required to be plugged in the undervoltage time-delay tripper

Installation and wiring

Secondary circuit wiring

1600A frame

AX auxiliary contact type

Four groups of adapters (Default) Six groups of adapters

Q-Undervoltage release F -Shunt release X -Closing coil
M-Charging motor SA-Limited XT-Wiring terminal
AX-Auxiliary contact SB1-Emergency stop button
SB2-Tripping push button SB3-Closing push button HL1-Failure indication lamp
HL2-Charging indication lamp HL3-Tripping indication lamp
HL4-Closing indication lamp FU-Fuse (6A)
1\#, 2\#: Power supply of intelligent controller
3\#~5\#: Tripping alarm contact (4-common point)
6\#, 9\#: Auxiliary contact, normally open contact
10\#~11\#: Empty
12\#~19\#: Empty
20\#: PE line
21\#~24\#: Empty

25\#~26\#: External N-phase transformer input signal contacts. Conventional products are empty. When an external transformer is required to be attached for special order of users, they are external transformer signal input contacts.
27\#, 28\#: Undervoltage release
29\#, 30\#: Shunt release
31\#, 32\#: Closing coil
33\#, 34\#: Charging indication
34\#, 35\#: Charging motor
36\#~56\#: Auxiliary contact
Conventional products are four groups of adapters, and six groups of adapters can be provided for special order for users.
Note: The full line section is connected, and the dot line is connected
by customers.

AX auxiliary contact type

Q-Undervoltage release F -Shunt release
X-Closing coil M -Charging motor
SA-Limited switch XT-Wiring terminal AX-Auxiliary contact
SB1-Emergency stop button SB2-Tripping push button
SB3-Closing push button HL1-Failure indication lamp
HL2-Charging indication lamp
HL3-Tripping indication lamp HL4-Closing indication lamp
FU-Fuse (6A) PSU-1-power module
1\#, 2\#: Power supply of intelligent controller
3\#~5\#: Tripping alarm contact (4-common point)
6\#~9\#: Auxiliary contact, normally open contact
10\#~11\#: Defaulted communication output contact for a H type
intelligent controller. P type is empty
12\#~19\#: Four groups of programmable output contacts
12\# : com, 18\#:D01, 16\#:D02, 14\#D03, 13\#D04

H type intelligent controller with a programmable output contact outputs in default: 12\#, 13\#: load 1 alarm, 12\#, 14\#: load 2 alarm, 12\#,16\#: tripping signal output, 12\#, 18\#: Closing signal output
P type intelligent controller with a programmable output contact outputs in default: 12\#, 13\#: load 1 alarm, 12\#, 14\#: load C alarm, 12\#, 16\#: self-diagnosis alarm, 12\#, 18\#: failure tripping. 20\#: PE line.
21\#~24\#: voltage display input signal contact
P/H type intelligent controller 21\#:N-phase voltage signal
22\#: A-phase voltage signal 23\#:B-phase voltage signal,
24\#: C- phase voltage signal
25\#~26\#: External N-phase transformer or external earth current
transformer input signal contacts. Conventional products are empty.
When an external transformer is required for special order for users,
they are external transformer signal input contacts.
27\#, 28\#: Undervoltage release
29\#, 30\#: Shunt releas
31\#, 32\#: Closing coil
33\#, 34\#: Charging indication
34\#, 35\#: Charging motor
36\#~56\#: Auxiliary contact
Conventional products are four groups of adapters, and six groups of adapters can be provided for special order for users.
TT-DP: DP protocol module. When the upper computer
communication protocol is Modbus-RTU, the ST-DP protocol module
is not required. When the upper computer communication protoco
is Profibus-DP, the Modbus-RTU protocol module is required to be converted into Profibus-DP protocol by the ST-DP protocol module, extra fee needed RU-1 :relay module. The circuit breaker is used for tripping and switching
via remote control, and is used for tripping and switching signal energy
amplification, extra fee needed.
Note: The full line section is connected, and the dot line should be connected by customers.

Installation and wiring

AX auxiliary contact type

Five groups of adapters

Six-open Six-closed auxiliary contact

Five-open five-closed auxiliary contact

Four-open four-closed auxiliary contact

Three-open three-closed auxiliary contact \quad Q-Undervoltage release \quad F-Shunt release $\quad \mathrm{X}$-Closing coi

M-Charging motor SA-Limited switch XT-Wiring terminal AX-Auxiliary contact SB1-Emergency stop button SB2-Tripping push button SB3-Closing push button HL1-Failure indication lamp
HL2-Charging indication lamp HL3-Tripping indication lamp
HL4-Closing indication lamp FU-Fuse (6A)
1\#, 2\#: Power supply of intelligent controller
3\#~5\#: Tripping alarm contact (4-common point)
6\#~9\#: Auxiliary contact, normally open contact
10\#~11\#: Empty
12\#~19\#: Empty
20\#: PE line
21\#~24\#: Empty

25\#~26\#: External N-phase input signal contacts.
Conventional products are empty. When an external transformer is required to be attached for special order of users, they are external transformer signal input contacts.
27\#, 28\#: Undervoltage release
29\#, 30\#: Shunt release
31\#, 32\#: Closing coil
33\#, 34\#: Charging indication
34\#, 35\#: Charging motor
36\#~56\#: Auxiliary contact
Conventional products are four groups of adapters.
The three-open three-closed auxiliary contact, the four-open four-closed auxiliary contact, the five-open five-closed auxiliary contact, and five groups of adapters can be provided for the special order for users. Note: 1. the full line section is connected, and the dot line should be connected by customers.
Note: 2. when the voltages of the controller of the 2000-4000 frame are AC $230 \mathrm{~V} / \mathrm{AC} 400 \mathrm{~V}$, the controller can be directly connected to 1\#, 2\#terminals. When the voltage is DC 220V/DC 110V, the controller can be connected to 1\#, 2\# terminals after the power supply module outputs DC 24 V .

AX auxiliary contact type

Four-open four-closed auxiliary contact Five-open five-closed auxiliary contact

21\#~24\#: voltage display input signal contact
P/H type intelligent controller
21\#: N-phase voltage signal, 22\#: A-phase voltage signal
23\#: B-phase voltage signal, 24\#: C- phase voltage signal
25\#~26\#: External N-phase transformer or external earthing current transformer input signal contacts.
Conventional products are empty. When an external transformer is required for special order for users, they are external transformer signal input contacts.
27\#, 28\#: Undervoltage release, 29\#, 30\#: Shunt release 31\#, 32\#: Closing coil, 33\#, 34\#: Charging indication
34\#, 35\#: Charging motor
36\#~56\#: Auxiliary contact

Three-open three-closed auxiliary contact

Q-Undervoltage release \quad F-Shunt release \quad X-Closing coil
M-Charging motor
SA-Limited switch
AX-Auxiliary contact SB1-Emergency stop button SB2-Tripping push button
SB3-Closing push button HL1-Failure indication lamp
HL2-Charging indication lamp HL3-Tripping indication lamp
HL4-Closing indication lamp FU-Fuse (6A) PSU-1-power module
1\#, 2\#: Power supply of intelligent controller
3\#~5\#: Tripping alarm contact (4-common point)
6\#~9\#: Auxiliary contact, normally open contact
10\#~11\#: Defaulted communication output contact for a H type intelligent controller. P type is empty
12\#~19\#: Four groups of programmable output contacts
12\# : com, 18 \#:D01,16 \#:D02,14 \#D03,13 \#D04
H type intelligent controller with a programmable output contact outputs in default: 12\#, 13\#: load 1 alarm, 12\#, 14\#: load 2 alarm, 12\#,16\#: tripping signal output, 12\#, 18\#: switching signal output.
P type intelligent controller with a programmable output contact outputs in default:
12\#, 13\#: load 1 alarm, 12\#, 14\#: load C alarm, 12\#,16\#: self-diagnosis alarm,
12\#, 18\#: failure tripping.
20\#: PE line.

Conventional products are four groups of adapters. The three-open three-closed auxiliary contact, the four-open four-closed auxiliary contact, the five-open five-closed auxiliary contact, and five groups of adapters can be provided for the special order for users. ST-DP: DP protocol module. When the upper computer communication protocol is Modbus-RTU, the ST-DP protocol module is not required. When the upper computer communication protocol is Profibus-DP, the Modbus-RTU protocol module is
required to be converted into Profibus-DP protocol by the ST-DP protocol module, extra fee needed.
RU-1: relay module. The circuit breaker is used for breaking and making via remote control, and is used for breaking and making signal energy amplification, extra fee needed. Note: 1. the full line section is connected, and the dot line should be connected by customers.
Note: 2. when the voltages of the controller of the 2000-4000 frame are AC 230V/AC 400 V , the controller can be directly connected to 1\#, 2\#terminals.
When the voltage is DC 220V/DC 110V, the controller can be connected to
1\#, 2\# terminals after the power supply module outputs DC 24 V .

Installation and wiring

Chassis position indicator device

Operation requirements

1. The chassis indication device can indicate the positions including "disconnected" ,"test" and "connected"which are completely or partially used according to the requirements of order.
2. When the body of the draw-out type circuit breaker is pushed from the "disconnected" position to the "test" position, 57\# and 58\# terminals should be transferred from connection into disconnection, and 58\# and 59\# terminals should be transferred from disconnection to connection
3. When the body of the draw-out type circuit breaker is pushed from the "disconnected" position to the "test" position, 60\# and 61\# terminals should be transferred from connection into disconnection, and 61\# and 62\# terminals should be transferred from disconnection to connection. There is sufficient safety distance between the bus of the circuit breaker body and a bridge-type contact of the safety shutter, and tripping and switching operation can be carried out reliably
4. When the body of the draw-out type circuit breaker is switched from the "test" position to the "connected" position, NXA16 type secondary circuit has no clearance. The NXA20-40 type safety shutter swing continuously after sending out the ""cracking" sound, and the safety shutter jiggle handle rotates within 15 circles. 63\# and 64\# terminals are being transferred from connection to disconnection. 64\# and 65\# terminals are transferred from disconnection to connection. The busbar of circuit breaker body is required to be reliably inserted into the bridge-type contact of the chassis base, and reliably bear the main circuit current to operate.
5. When the body of the draw-out type circuit breaker is pushed from the "connected" position to the "test" position, 60\# and 61\# terminals should be transferred from connection into disconnection, and 61\# and 62\# terminals should be transferred from disconnection to connection. There is sufficient safety distance between the busbar of the circuit breaker body and a bridge-type contact of the chassis, and tripping and switching operation can be carried out reliably.
6. When the body of the draw-out type circuit breaker swings from the "test" position to the "disconnected" position, 57\# and 58\# terminals should be transferred from connection to disconnection, and 58\# and 59\# terminals should be transferred from disconnection to connection, and at the same time, the circuit breaker body still cannot be drawn out, and needs to swing toward the "disconnected" position until the handle cannot swing any more, and meanwhile, the circuit breaker body can be drawn out. After the circuit breaker is pulled out, 57\# and 58\# terminals should be transferred from disconnection to connection, and 58\# and 59\# terminals should be transferred from connection to disconnection.
7. In the position transfer operation process of the chassis, the operation can only be stopped when the indicator points to "disconnected", "test" and "conncected or the position indicator cannot display the position of the circuit breaker body in the chassis correctly.

LSI curves

Fig. 1 Overcurrent protection curves

Earth fault protection curves

Fig. 2 Asymmetrical earth fault protection curves

Annex II: Configuration

Standard configuration	1600A frame		2000A frame		3200A frame		4000A frame	
	Fixed type	draw-out type						
Circuit breaker body	-	-	-	-	-	-	-	-
Chassis		-		-		-		-
Intelligent controller	-	-	-	-	-	-	-	-
Vertical and horizontal connection	-	-	-	-	-	-	-	-
ON/OFF indication contact 4CO	-	-	-	-	-	-	-	-
Failure tripping indication contact	-	-	-	-	-	-	-	-
Motor operating mechanism	-	-	\square	-	\square	-	-	-
Closing coil	-	-	-	-	-	-	-	-
Shunt release	-	-	-	-	-	-	-	-
Door frame	-	-	-	-	-	-	-	-

Optional accessories	1600A frame		2000A frame		3200A frame		4000A frame	
	Fixed type	draw-out type						
Standard undervoltage release	-	-	-	-	-	-	-	-
Adjustable time-delay undervoltage unit	-	-	-	-	-	-	-	-
Pushbutton lock	-	-	-	-	-	\square	-	-
"Disconnected" position padlock		-		-		-		-
Safety shutters padlock		-		-		-		-
Body lock	-	-	-	\square	-	-	-	-
Position door interlock		-		-		-		-
State door interlock		-		-		-		-
ON/OFF indication contact 6CO	-	-						
ON/OFF indication contact $5 \mathrm{NO}+5 \mathrm{NC}$			-	-	-	-	-	-
ON/OFF indication contact $3 \mathrm{NO}+3 \mathrm{NC}$			-	-	-	-	-	-
ON/OFF indication contact 4NO +4 NC			\square	-	-	-	-	-
ON/OFF indication contact 5CO			-	-	-	-	-	-
"Connected", "Disconnected" and "test" position indication contact		-		-		-		-
Mechanical interlock	-	-	-	-	-	-	-	-
Source-changeover controller	-	-	-	-	-	-	-	-
External transformer (Neutral CT)	-	-	-	-	-	-	-	-
Earth current transformer and accessories thereof	-	-	-	-	-	-	-	-
Interphase barrier	-	-	-	-	-	-	-	-

Annex IV: Earth fault protection

Description of NXA earth fault protection

Residual current earth fault type protection

- A three-pole circuit breaker achieves earth fault protection by detecting whether the sum of three current vectors is zero via three internal current transformer.

- A four-pole circuit breaker achieves earth fault protection by detecting whether the sum of three phase of current vectors and N phase of current vectors via four internal current transformer.

- A $3 P+N$ system achieves vector by externally connecting an N-pole transformer to a three-pole circuit breaker and calculating the vector.

Note:

(1) The detail information of external N -pole transformer is seen in P41.
(2) The N-pole current transformer is specially configured by the company, and the default leading wire length is 2 meters.
(3) When adopt 3PT type, ground fault protection can only apply to balance load application, if it is imbalance load, the ground fault function should be closed or setting value must be upper on imbalance current or the intelligent controller will misoperate
(4) When adopt $(3 \mathrm{P}+\mathrm{N}) \mathrm{T}$ type, the maximon distance between transformer and circuit breaker should be within 5 meters. The loading wire of transformer exceed 2 meters should sepciatly noted when order.

- Fig. 1 displays a fault at the load side of the NXA circuit breaker. The fault current only flows through one phase. If the sum of three phase of current vectors detected by four current transformers is higher than the set threshold value, an intelligent control unit will activate the difference type earth fault protection function. The type of earth fault protection achieves the earth fault protection at the load side.

Annex IV: Earth fault protection

Earth current type earth fault protection

Earth fault protection is realized at a star-shaped central point of the transformer by an earth transformer
An earth transformer can be configured on a central conductor of a star-shaped contact of the transformer under the condition that the circuit breaker protects a medium/low-voltage transformer. P/H type controller is required to be configured on the circuit breaker, and an external earth transformer is selected. The earth transformer can detect the earth fault current at the power supply side and the load side of the NXA circuit breaker. As shown below:

As shown below, the earth fault at the power supply side of the NXA circuit breaker can be examined by installing an external earth current transformer, and meanwhile, the earth fault at the load side of the NXA circuit breaker also can be detected.

Dual earth fault protection

NXA P/H type controller has a unique feature: the installation of two independent earth fault protection curves is permissible, so that two kinds of configurations can be managed at the same time. The release can differentiate unlimited regional earth faults because of the feature to command the NXA circuit breaker to trip and the limited regional earth fault to command the medium-voltage circuit breaker to strip.

Annex V: Source-changeover controller

Functions of the controller

2A type display and operation

CD-1: A 2A type source-changeover system is used for the switch between power grids or between the power grid and generator When a normal power supply does not supply power normally, such as undervoltage, overvolgage, phase breaking, a spare power supply is switched for supplying power. A mechanical interlock component is configured according to standard.

Automatic (The system judges the operateion automatically, and the light is on when pressing the left upper part) Manual (The mechanism is operated by a handle or with buttons S1, S2 and OFF operation)
S1:load is powered by switching to S1, and the light is on when pressing S1 in the left upper part.
S2: load is powered by switching to S2, and the light is on when pressing S2 in the left upper part.
Disconnection: S1, S2 are stripped, and the system load is not powered operation zone
Pressing anyone of buttons S1, S2 and OFF under the automatic condition, the system becomes manual, and corresponding operation is carried out when pressing corresponding buttons.

2A type of functions

The controller has the following functions

1. Dual-circuit voltage detection display
2. Overvoltage threshold value adjustment: $400 \mathrm{~V}-480 \mathrm{~V}$
3. Undervoltage threshold value adjustment: $280 \mathrm{~V}-360 \mathrm{~V}$
4. Adjustment of $\mathrm{T} 1, \mathrm{~T} 2, \mathrm{~T} 3$ and $\mathrm{T} 4: 0.5-64 \mathrm{~S}$ with the step size of 0.5 S
5. Undervoltage and overvoltage fault indication
6. Power supply fault indication
7. State indication of the circuit breaker
8. Self-input and self-reset or self-input and self-reset selection
9. Manual or automatic selection
10. Comprehensive alarm for transfer failure (fault of the circuit breaker, sending fault of control signals and unmet transfer conditions)
11. All primary adjustment states after resetting and before defaulting
12. Alarm contact
13. Unloading contact
14. Startup contact of a power generator
15. Standard configuration
16. Mechanical interlock
17. The controller has an overvoltage protection function and operates normally with long-term overvoltage: 130% Ue.

Annex V: Source-changeover controller

3A type display and operation

CD-1 A 3A source-changeover system is applicable to a power supplying system with two power supplies and one buscouple.
In the manual operation process, load cannot lead to power interruption, so that the safety running level and the power supplying continuity for power distribution are enhanced. The 3A automatic power supply conversion system is applied to electric places.

| Automatic (The system judges the operateion automatically, and the light is |
| :--- | :--- |
| on when pressing the left upper part) |

3A type functions

The controller has the following functions

1. Dual-circuit voltage detection display
2. Overvoltage threshold value adjustment: $400 \mathrm{~V}-480 \mathrm{~V}$
3. Undervoltage threshold value adjustment: $280 \mathrm{~V}-360 \mathrm{~V}$
4. Adjustment of T1, T2, T3 and T4: 0.5-64S with the step size of 0.5 S
5. Undervoltage and overvoltage fault indication
6. Power supply fault indication
7. State indication of the circuit breaker
8. Self-input and self-reset or self-input and self-reset selection
9. Manual or automatic selection
10. Comprehensive alarm for transfer failure (fault of the circuit breaker, sending fault of control signals and unmet transfer conditions)
11. All primary adjustment states after resetting and before defaulting
12. Alarm contact
13. Unloading function
14. Standard configuration
15. Mechanical interlock
16. The controller has an overvoltage protection function, and operates normally with long-term overvoltage: 130% Ue.

Truth table

S1-circuit power supply'	TIE buscouple	S2-circuit power supply
1	0	1
1	1	0
0	1	1
1	0	0
0	0	1
0	0	0

