

# Vacuum Circuit Breakers ANSI Type





# Susol VCB







Susol VCB is full line-up new VCB which has the high interrupting capacity, large current(~50kA, ~3000A), and maximized compatibility with existing products through the dual phases and compact sized models.

#### Contents

| External structure                        | 20 |
|-------------------------------------------|----|
| Basic features and interrupting operation | 22 |
| Standards and certification               | 25 |
| Types and ordering information            | 26 |
| Ratings                                   | 31 |
| Accessories                               | 34 |
| Control circuit diagrams                  | 65 |
| Dimensions                                | 68 |
| Technical data                            | 85 |

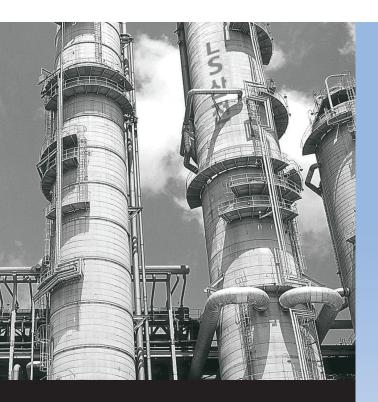


# **Susol** VCB

Vacuum Circuit Breaker, VCB is installed in the medium voltage distribution lines to protect life and load equipment. In case of accidents such as over current, short circuit and ground fault current, VCB works by interrupting the circuit through the inner Vacuum Interrupter which is acted by signal from the outside separate relay.

LSIS' Super Solution, Susol VCB responds.

- customer needs for the breakers with high interrupting capacity and large current due to the integration and increase of the load capacity.
- worldwide trend of diversification in the medium voltage distribution lines.
- increase of the reliability for the temperature characteristics of circuit breakers.


Premium-type products to improve convenience and reliability of medium voltage switchgear configuration.

- full line-up modeling to the high interrupting capacity and large current.
- main structure with high reliability application.
- a variety of accessories and ability to maximize.

Suitable for use as the main circuit breaker to protect key installations in the places such as device industry, power plants, high-rise buildings, large ships.







# Susol VCB Family

Susol VCB series are premium-type products featuring main structure with high reliability application and a variety of accessories and ability to maximize to be suitable for use as the main circuit breaker to protect key installations in the places such as device industry, power plants, high-rise buildings, large ships

# 6 | LSIS Co., Ltd.

# 4.76/15kV (VL-05/15)

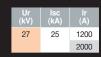
- Rated short-time (to withstand current): 2sec
- · Rated operating sequence: O-0.3s-CO-3min-CO
- · Various cradle: P, H type
- CB Compartment for MCSG available
- A variety of control power
  - DC 24~30V, DC 48~60V, DC 110V, DC 125V, DC 220V
- AC 48V, AC 100~130V, AC 220~250V
- · A variety of accessories
- VCB part: Charge switch, UVT, Secondary trip coil, Latch checking switch, Position switch, Locking magnet, Plug interlock, Key lock, Button cover, Button padlock, Padlock (H type Door interlock), MOC
- Cradle part: MOC (Mechanical Operated Cell switch), TOC (Truck Operated Cell switch), Temperature sensor, Earthing switch & accessaries, Door, Door interlock, Door emergency button
- Others: Racking in/out handle, UVT Time delay controller, CTD (Condensor Trip Device), Temperature module
- TEST/CONNECT Automatic Position Indicator
- Standards and certification
- IEEE Std C37.09, IEEE Std C37.20.2,
   ANSI C37.54, ANSI C37.55
- KEMA, KERI type tested certification



| Ur<br>(kV) | lsc<br>(kA) | lr<br>(A) |
|------------|-------------|-----------|
| 4.76       | 25          | 1200      |
|            |             | 2000      |
|            | 31.5        | 1200      |
|            |             | 2000      |
| 15         | 25          | 1200      |
|            |             | 2000      |
|            | 31.5        | 1200      |
|            |             | 2000      |

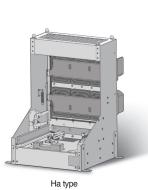
# Full line – up & Compact

Full line-up new VCB models to the high interrupting capacity and large current ( $\sim$  50kA,  $\sim$  3000A) featuring maximization of compatibility with existing products through the dualistic deployment of phases and compact models


## 27kV (VH-27)

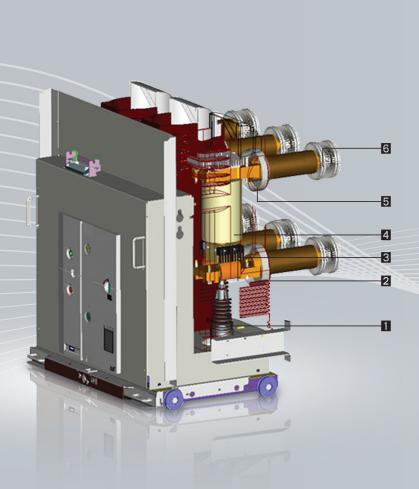
- · Rated short-time (to withstand current): 2sec
- Rated operating sequence: O-0.3s-CO-3min-CO)
- · Various cradle: P, H type
- · CB Compartment for MCSG available
- A variety of control power
- DC 24~30V, DC 48~60V, DC 110V, DC 125V, DC 220V
- AC 48V, AC 100~130V, AC 220~250V
- A variety of accessories
- VCB part: Charge switch, UVT, Secondary trip coil, Latch checking switch, Position switch, Locking magnet, Plug interlock, Key lock, Button cover, Button padlock, Padlock (H type Door interlock), MOC
- Cradle part: MOC (Mechanical Operated Cell switch), TOC (Truck Operated Cell switch), Temperature sensor, Earthing switch & accessaries, Door, Door interlock, Door emergency button
- Others: Racking in/out handle, UVT Time delay controller, CTD (Condensor Trip Device), Temperature module
- TEST/CONNECT Automatic Position Indicator
- Standards and certification

## 4.76/15kV (VH-05/15)


- · Rated short-time (to withstand current): 2sec
- · Rated operating sequence: O-0.3s-CO-3min-CO
- Electrical and mechanical life: 20,000 operations
- · Various cradle: P, H type
- · CB Compartment for MCSG available
- · A variety of control power
- DC 48V, DC 110V, DC 125V, DC 220V
- AC 48V, AC 110V, AC 220V
- A variety of accessories
- VCB part: UVT, Secondary trip coil, Latch checking switch, Position switch, Locking magnet, Plug interlock, Key lock, Button cover, Button padlock, Padlock (H type Door interlock), MOC
- Cradle part: MOC (Mechanical Operated Cell switch), TOC (Truck Operated Cell switch), Temperature sensor, Earthing switch & accessaries, Door, Door interlock, Door emergency button
- Others: Racking in/out handle, Lifting hook, UVT Time delay controller, CTD (Condensor Trip Device), Temperature module
- · Standards and certification
- ANSI/IEEE Std. C37.09, KEPIC EED 1100
- KEMA, KERI type tested certification








| Ur<br>(kV) | Isc<br>(kA) | lr<br>(A) |
|------------|-------------|-----------|
| 4.76       | 40          | 1200      |
|            |             | 2000      |
|            |             | 3000      |
|            | 50          | 1200      |
|            |             | 2000      |
|            |             | 3000      |
| 15         | 40          | 1200      |
|            |             | 2000      |
|            |             | 3000      |
|            | 50          | 1200      |
|            |             | 2000      |
|            |             | 3000      |

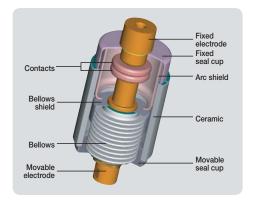








Main circuit structure with high reliability


Susol

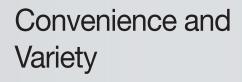
**VCB** 

#### **Breaker**

- 1 Insulation rod
- 2 Lower terminal
- 3 Shunt
- 4 Vacuum interrupter
- **5** Upper terminal
- 6 Tulip contactor






#### Vacuum Interrupter, VI

The vacuum rate within the VI is very high (approximately 5x10<sup>-5</sup> Torr) and the spacing between fixed contact and movable contact is about 6~20mm, depending on the voltage.

The contacts are in a structure that arc can easily be extinguished and the surfaces of

the contacts are made of special alloy (copperchromium) and the interior is completely sealed to prevent loss of vacuum.

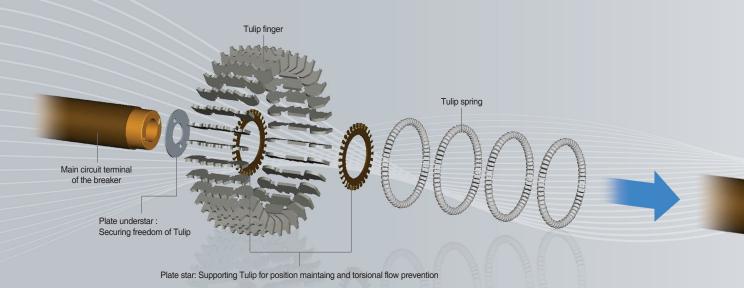
Therefore the wearing of the contacts can be minimized in the event of short-circuit and the arc energy by overvoltage or switching can be reduced effectively.



- Maximizing the durability and reliability of the main circuit contactors (Stego Tulip contactor)
- Strong structure for the temperature rise (Natural cooling system)










# **Stego Tulip**

#### Main circuit structure with high reliability

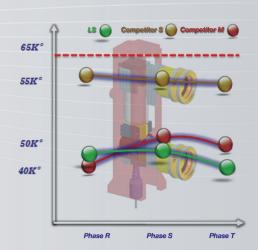
- Maximizing the durability and reliability of the main circuit contactors (Stego Tulip contactor)
- Strong structure for the temperature rise (Natural cooling system)

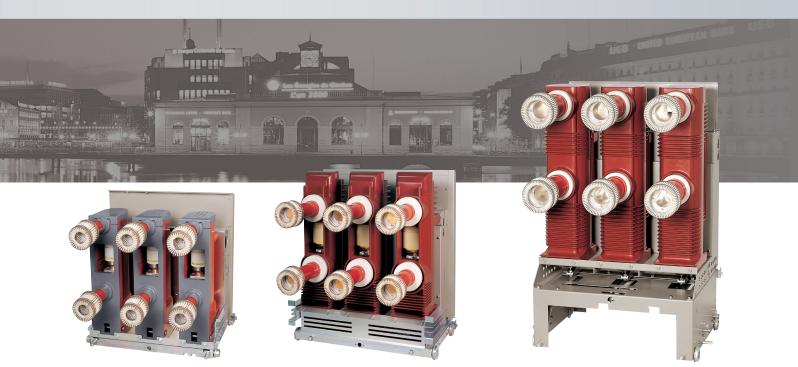


#### Structure of Stego Tulip Terminal

- · Maintaining the connection between breaker and cradle for the optimum current path through securing freedom of Tulip.
- Increasing the heat dissipation area of the contactors and minimizing aging.




# 4.76/15/27kV ...


(VH-05/15/27)

- Drawout / natural cooling system
- Improved temperature characteristics and ensured high reliability

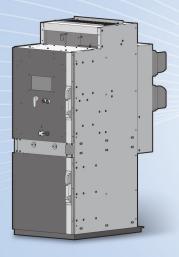


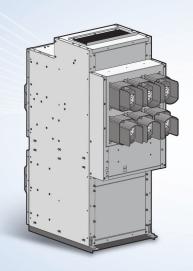


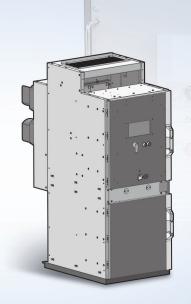




VL type Tulip contactor


VH type Tulip contactor


27kV Tulip contactor


# **CB Compartment**

#### Convenience in building switchgears

- · CB compartment structure: H type cradle
- Metal isolation structure to prevent the accident spread and ensure safety
- · Convenience of switchgear building





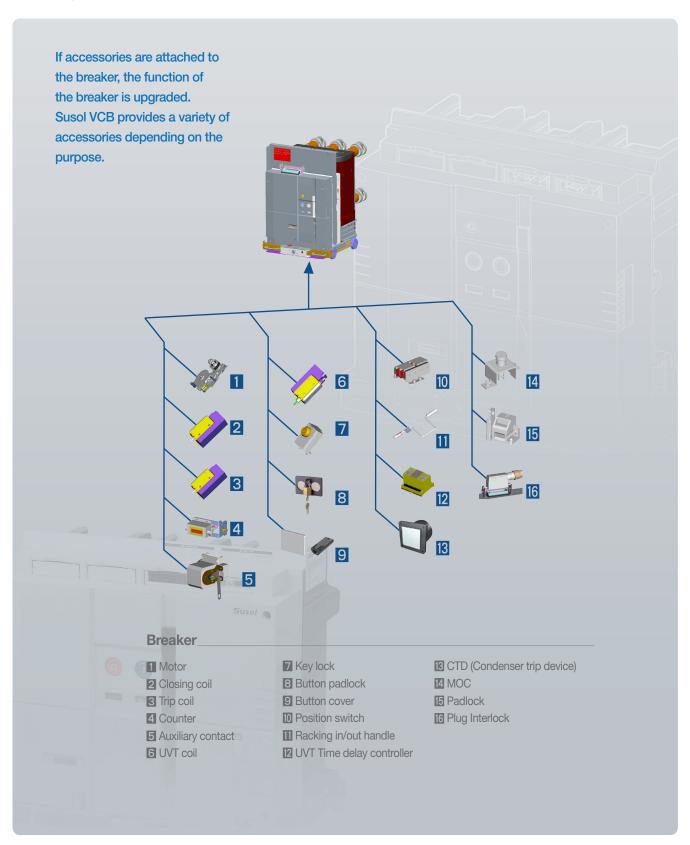






#### 4.76/15/27kV 20/25/31.5/40/50kA

- Metal isolation structure to prevent the accident spread and ensure safety
- Convenience of operation by Truck
- Drawable in the closed position of the switchgear door
- Racking-in/out positions indicated mechanically
- · Equipped with safety devices and accessories
- Control power connected Interlock
- Earthing S/W and interlock, MOC/TOC (ANSI)
- · Convenience in building switchgears
- Module assembly with CB compartment

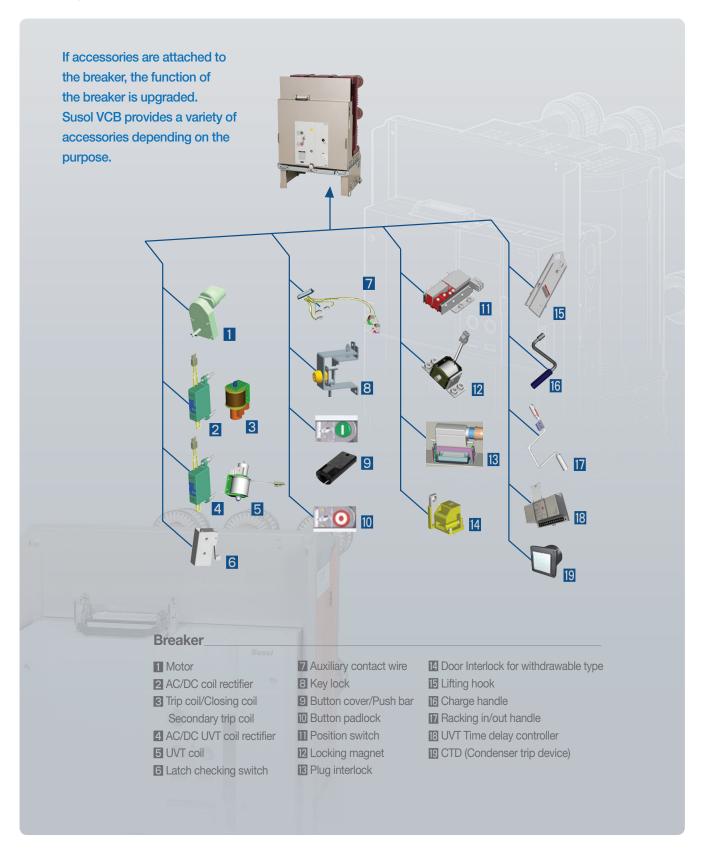




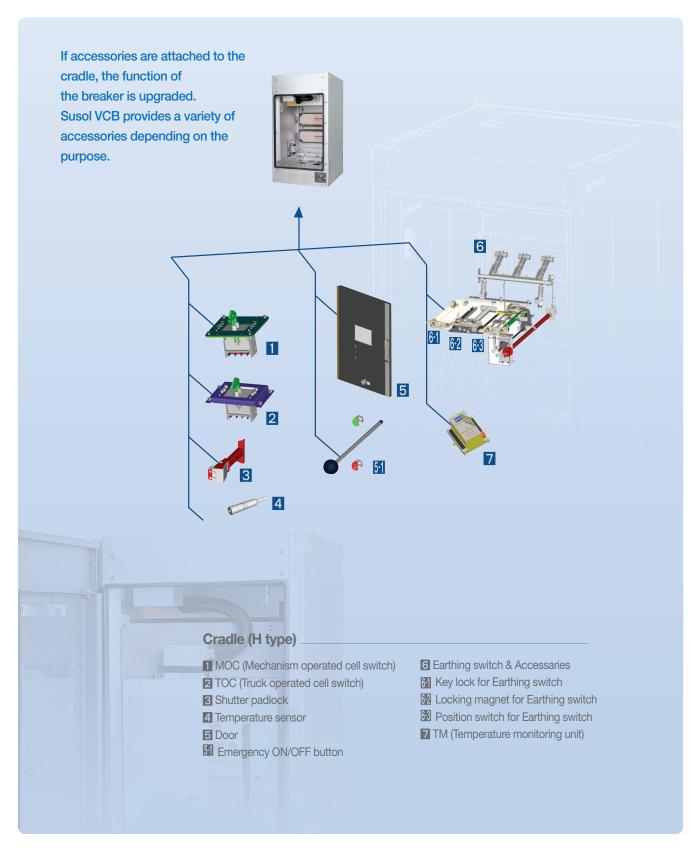



# **Accessories**

# A variety of accessories for VL-05/15

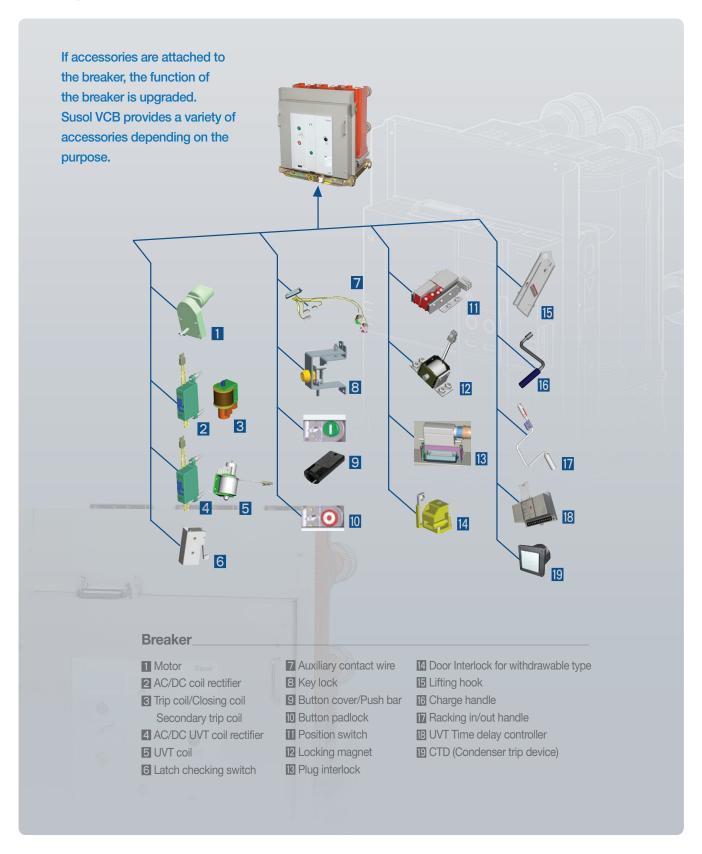



# A variety of accessories for VCL-05/15

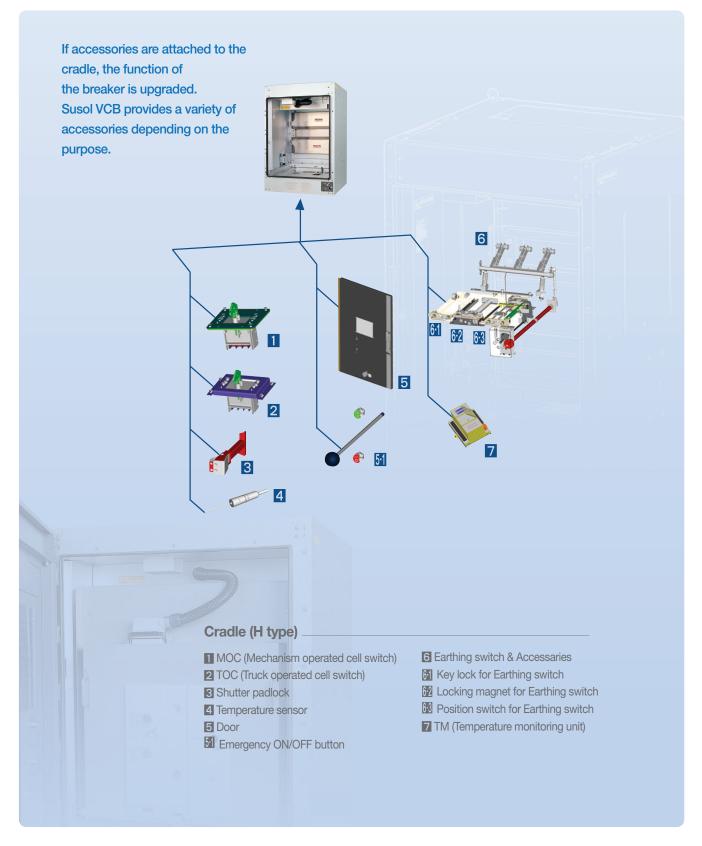



# **Accessories**

# A variety of accessories for VH-27




# A variety of accessories for VCL-27




# **Accessories**

# A variety of accessories for VH-05/15



# A variety of accessories for VCL-05/15



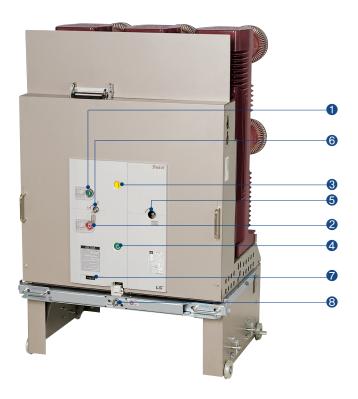
# **External structure of VCB**

#### Susol

## Breaker ... VL type



Back side




# Name of each part

- 1 Push ON Button
- 2 Push OFF Button
- 3 Charge/Discharge Indicator
- 4 ON/OFF Indicator
- **6** Manual Charging Handle
- **6** Operation Counter
- **7** TEST/Connect Position Indicator

## Susol

## Breaker ... VH type



## **Back side**



# Name of each part

- 1 Push ON Button
- 2 Push OFF Button
- 3 Charge/Discharge Indicator
- 4 ON/OFF Indicator
- **6** Manual Charging Handle
- 6 Key Lock
- Operation Counter
- 8 TEST/Connect Position Indicator

# **Basic functions and interrupting operation**

Susol

#### **Basic functions**

#### **Manual operation**

#### 1 Manual Charge

- a) VL type: operate the charge handle 7-8 times as a fully stroke.
- b) VH type: Insert the charge handle into the handle slot first. Rotate the handle clockwise 40 times more and then charge will be complete with a click sound.
  - When the closing spring is charged fully "CHARGED" is displayed at the charge indicator.

#### 2 Manual closing

- a) Pressing the ON button the breaker is closed.
- b) With the closing of the breaker "ON" is displayed at Close/Trip indicator and "DISCHARGED" at the charge indicator.

#### 3 Manual trip

- a) Pressing the OFF button the breaker is opened.
- b) "OFF" is displayed at Close/Trip indicator.

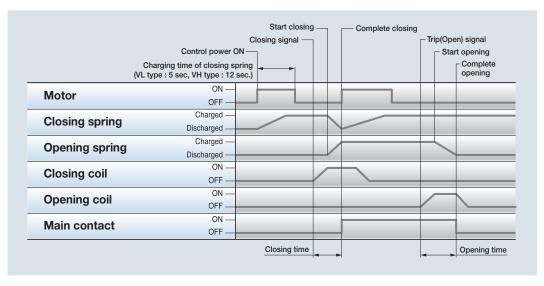
#### **Electric operation**

#### ① Electric charge

The breaker is remotely closing with charging of closing spring. If the breaker trips the closing spring is automatically charged by gear motors.

#### ② Electric closing

Remote closing is operated by the closing coil.


#### ③ Electric trip

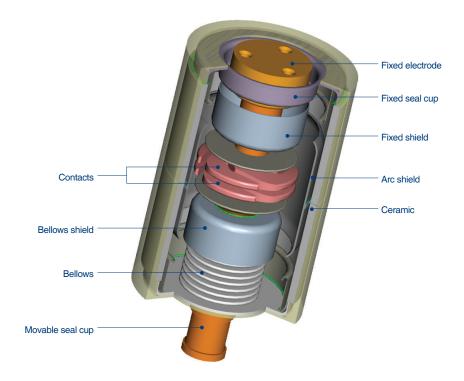
Remote trip can be operated by the trip coil or UVT coil.

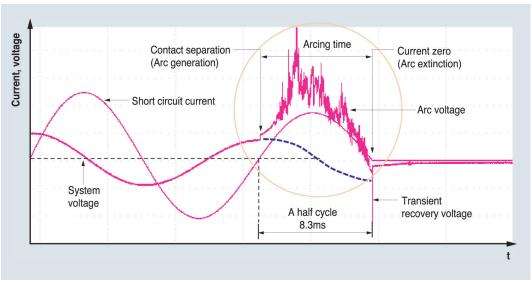
Main contacts are operated by the energy of the spring mechanism and closing spring is charged by the motor in the mechanism.

Breaker is closed by closing coil and tripped by trip coil.

These operations are repeated in VCB as shown in the below sequence chart.



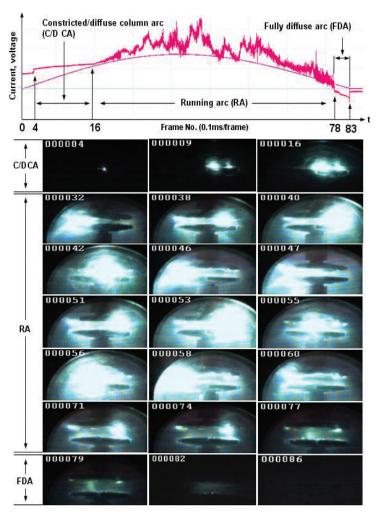

Sequence of the switching mechanism


# The interruption of vacuum interrupters

The interruption of VCB is carried out by the vacuum interrupters.

Interrupter contacts as a key part made of copper - chromium (CuCr) material with spiral shape have low contact wear characteristics and withstand voltage is excellent.

Spiral contacts make the arc generated between the surfaces of contacts rotated around the surface of contact by the induced magnetic field generated due to the spiral contact structure, which results in preventing local heating, thereby corruption and interrupting instantaneously.





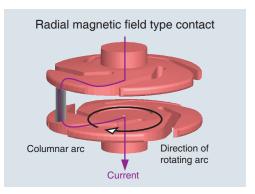

An example of oscillogram obtained through the interrupting test using LC resonant circuit

Susol

# The interruption of vacuum interrupters



Arc voltage waveforms and arc image captured during arcing time


In case of using the flat contact any of the designs do not reflect on when contacts are opening the arc with high temperature is contracted and fixed in the center of the contacts, Which is called pinch effect.

To prevent the effect two kinds of contact shapes are designed. One is Axial magnetic field which spreads the arc before its contraction, and the other is Radial magnetic field which permits the contraction of the arc but makes it rotated to disperse the energy.

Because contracted arc is shaped like a cylinder it is called Contracted arc or columnar arc.

Spiral contact structure (Radial magnetic field), using the force (F =  $j \times B)$  generated by the interaction of the radial magnetic field caused by the current flowing through the arc between two contacts, disperse the arc energy evenly on the surface of contact by rotating the arc that is contracted by the pinch effect so as to minimize contact damage.

The images show arc behavior during the arcing time of about 8ms by shooting with high-speed camera capable of shooting 10,000 frames per sec. (0.1ms/frame) by focusing on parts of the arcing time on the above graph and simultaneously measured arc voltage also represented to show arc state by section.



Arc driving principle in the contacts of Radial magnetic field

# Standards and certification

Susol

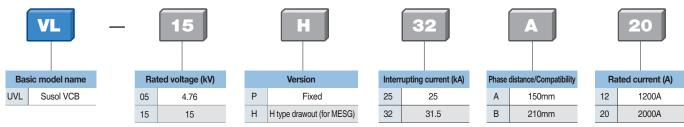
Susol VCB has been type tested and obtained certifications according to the latest IEC standard at international testing laboratory and can be installed and applied at the environment and conditions in accordance with the standard.

#### Standard

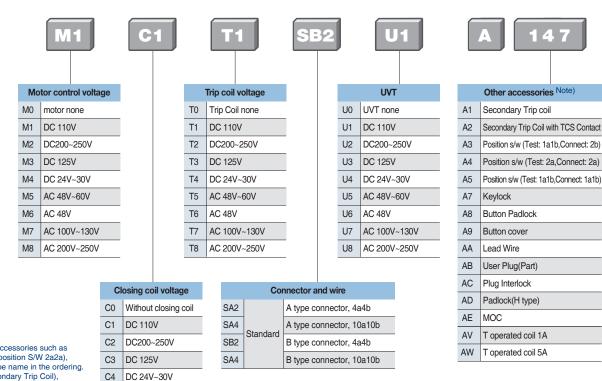
- IEEE Std C37.09, IEEE Std C37.20.2, ANSI C37.54, ANSI C37.55

#### Test and certification

- · Test report (KERI)
- · Test report (KEMA)




# Types and ordering information


#### Susol

#### VL-05/15

#### **Breaker**



- \* In case of 1200A VCB, only 150mm is applicable.
- In case of 2000A VCB, only 210mm is applicable.



#### Note)

- In the case of selecting accessories such as A1(Secondary coil), A4(position S/W 2a2a), A7(key lock), A147 is type name in the ordering.
- 2. Unable to select A1(Secondary Trip Coil), U1~U8(UVT) simultaneously.
- A3(Position S/W 1a3b), A4(Position S/W 2a2b) and A5(Position S/W 2a2b) can not be selected simultaneously.
- A8(Button Padlock) and A9(Button Cover) can not be selected simultaneously.
- 5. When A1(Secondary Trip Coil) is selected the

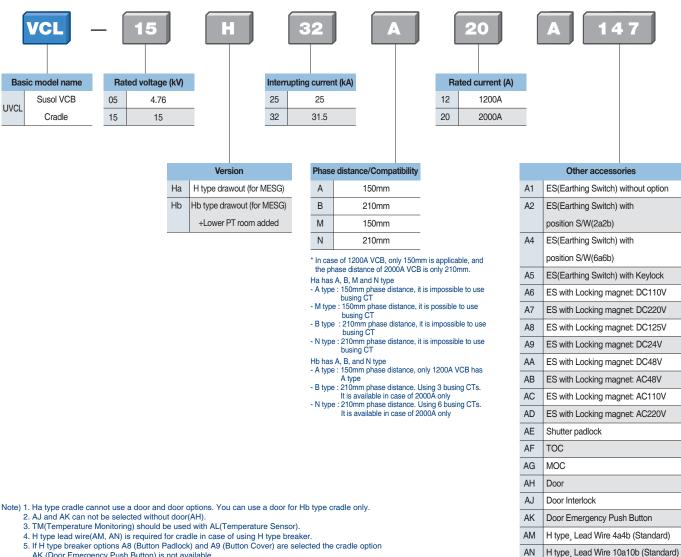
  maximum available auxiliary contacts are 9a9b
- maximum available auxiliary contacts are 9a9b.
  6. When A2(Secondary Trip Coil with TCS Contact)
- is selected the maximum available auxiliary contacts are 4a3b, 9a8b.
- 7. The flame retardant wire is applicable to auxiliary contacts 4a4b, not to 10a10b.

DC 48V~60V

AC 100V~130V

AC 200V~250V

AC 48V


C5

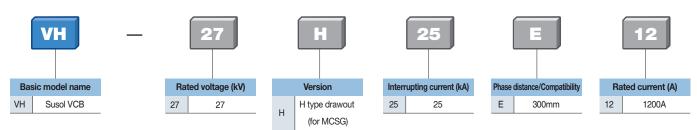
C6

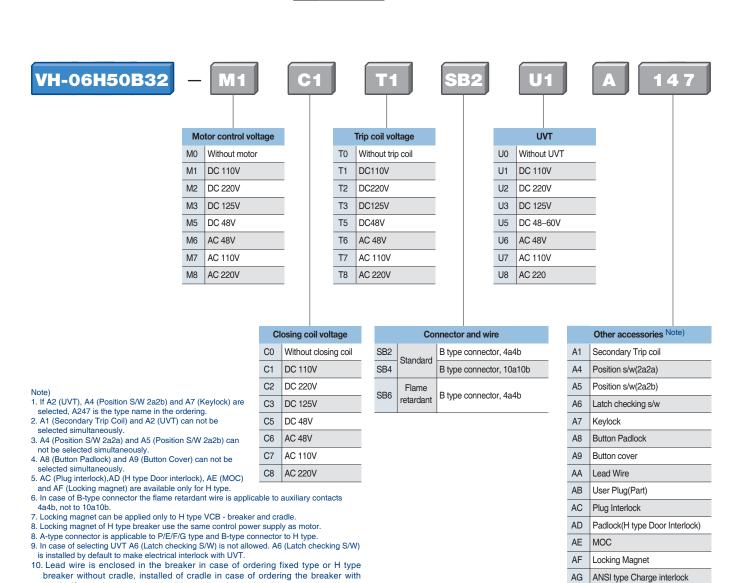
- 8. Locking magnet of breaker use the same control power supply as motor.
- In case of UL Type, AC(Plug Interlock), AD(Padlock(H type)) and AE(MOC) are included as standard.

#### Susol

#### **Cradle**




- AK (Door Emergency Push Button) is not available.
- 6. Earthing Switch (A1) includes Keylock (A5) as standard.
  7. H type breaker includes options such as AE (Shutter padlock), AE (TOC, AG (MOC), AH (Door), AJ (Door Interlock) as standard.


# Types and ordering information

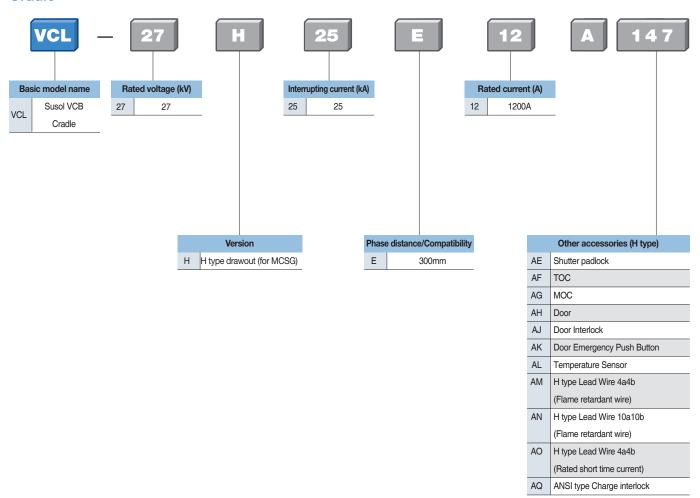
#### Susol

#### **VH-27**

#### **Breaker**






AP Trip Coil Monitoring Contact

Note) A is written only once in case of more than one.

cradle. If user plug is selected it will be enclosed in the breaker.

#### Susol

#### **Cradle**

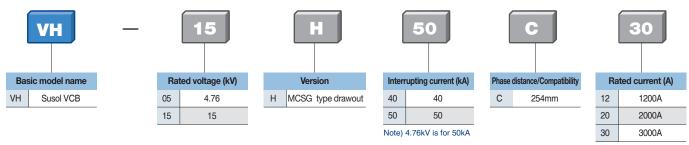


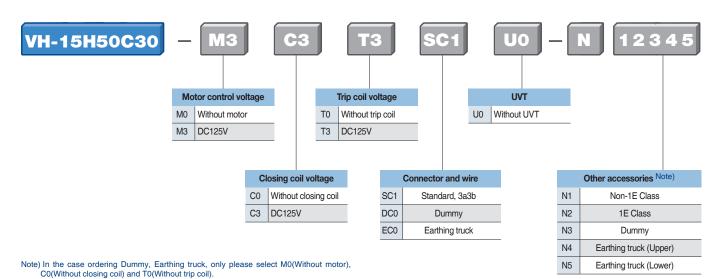
Note) 1. These accessories for cradle and TM can be applied only to H type.

2. AJ and AK can not be selected without door (AH).

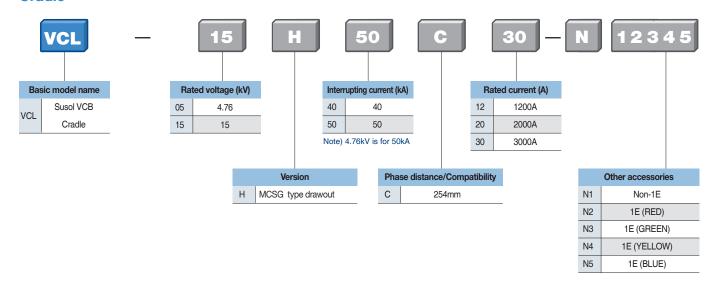
3. TM (Temperature Monitoring) should be used with AL (Temperature Sensor).

4. H type lead wire - one of AM, AN or AO is required for cradle in case of H type breaker.


Note) A is written only once in case of more than one.


# Types and ordering information

Susol


#### VH-05/15







#### **Cradle**



# Ratings - 4.76/15kV 25/31.5kA 1200/2000A

Susol

# VL-05/15





| Item                            |            |                  | VL-05 <u>□</u> 25, 32 <u>□</u> 12, 20                                        |      |               |               | VL-15 <b>□</b> 25, 32 <b>□</b> 12, 20 |                |       |      |  |
|---------------------------------|------------|------------------|------------------------------------------------------------------------------|------|---------------|---------------|---------------------------------------|----------------|-------|------|--|
| Rated voltage                   |            | Ur (kV)          | 4.76                                                                         |      |               |               | 15                                    |                |       |      |  |
| Rated current                   |            | Ir (A)           | 1200                                                                         | 2000 | 1200          | 2000          | 1200                                  | 2000           | 1200  | 2000 |  |
| Pole distance                   |            | (mm)             | 150                                                                          | 210  | 150           | 210           | 150                                   | 210            | 150   | 210  |  |
| Weight(H, Cradle)               |            | (kg)             | 430                                                                          | 510  | 430           | 510           | 430                                   | 510            | 430   | 510  |  |
| Weight(H, Circuit Crad          | le)        | (kg)             | 115                                                                          | 140  | 115           | 140           | 115                                   | 140            | 115   | 140  |  |
| Weight(P, Circuit Cradle        | e)         | (kg)             | 85                                                                           | 130  | 85            | 130           | 85                                    | 130            | 85    | 130  |  |
| Rated frequency                 |            | fr (Hz)          |                                                                              |      |               | 6             | 0                                     |                |       |      |  |
| Rated interrupting curr         | rent       | Ik (kA)          | 25                                                                           | 31.5 | 25            | 31.5          | 25                                    | 31.5           | 25    | 31.5 |  |
| Rated interrupting cap          | acity      | (MVA)            | 207                                                                          | 260  | 207           | 260           | 650                                   | 820            | 650   | 820  |  |
| Rated short-time curre          | ent        | lk/tk (kA)       |                                                                              |      |               | 31.5          | 5/2s                                  |                |       |      |  |
| Rated making current            |            | Ip (kA)          |                                                                              |      |               | 81            | .9                                    |                |       |      |  |
| Rated interrupting time (cycle) |            |                  | 3                                                                            |      |               |               |                                       |                |       |      |  |
| Withstand                       | Frequency  | Ud (kV)          |                                                                              | 1    | 9             |               |                                       | 9              | 95    |      |  |
| Voltage                         | Impulse    | Ud (kV/1.2×50μs) |                                                                              | 6    | 60            |               |                                       | 9              | 95    |      |  |
| Operating duty                  |            |                  | O-0.3s-CO-3min-CO                                                            |      |               |               |                                       |                |       |      |  |
| Rated Closing Control           | voltage    | (V)              | DC 24~30V, DC 48~60V, DC110V, DC125V, DC220V, AC 48V, AC100~130V, AC220~250V |      |               |               |                                       |                |       |      |  |
| Rated Trip Control volt         | age        | (V)              | DC 24~30V, DC 48~60V, DC110V, DC125V, DC220V, AC 48V, AC100~130V, AC220~250V |      |               |               |                                       |                |       |      |  |
| Standard aux. contact           | S          |                  | 4a4b, 10a10b                                                                 |      |               |               |                                       |                |       |      |  |
| Rated opening time              |            | (s)              | 0.04                                                                         |      |               |               |                                       |                |       |      |  |
| No-load closing time            |            | (s)              | 0.06                                                                         |      |               |               |                                       |                |       |      |  |
| Mechanical Endurance            | 9          | (Operations)     | 10,000                                                                       |      |               |               |                                       |                |       |      |  |
| Electrical Endurance            |            |                  | Reference Standard                                                           |      |               |               |                                       |                |       |      |  |
| Capacitive current switching    |            |                  | C2                                                                           |      |               |               |                                       |                |       |      |  |
| Life time                       | Electrical | (Operations)     | Reference Electrical Life Graph                                              |      |               |               |                                       |                |       |      |  |
| Installation                    | Fixed      |                  | P Type                                                                       |      |               |               |                                       |                |       |      |  |
|                                 | Draw-out   |                  | Н Туре                                                                       |      |               |               |                                       |                |       |      |  |
| Applicable standard             |            |                  |                                                                              | IEEE | Std C37.09, I | IEEE Std C37. | 20.2, ANSI C3                         | 37.54, ANSI C3 | 37.55 |      |  |

<sup>\*</sup> Lifetime with maintenance.
\*\* H type is a box type cradle with CB compartment style structure.

# Ratings - 27kV 25kA 1200/2000A

Susol

## **VH-27**



| Item                       |                          |              | VH-27 <u></u> 25 <u></u> 12 | VH-27 <u></u> 25 <u></u> 20 |  |  |  |
|----------------------------|--------------------------|--------------|-----------------------------|-----------------------------|--|--|--|
| Rated voltage Ur (kV)      |                          |              | 27                          |                             |  |  |  |
| Rated short-circuit        | current                  | Isc (kA)     | 25                          |                             |  |  |  |
| Rated normal curren        | nt                       | Ir (A)       | 1200                        | 2000                        |  |  |  |
| Rated withstand            | Power frequency (1 min)  | (kg)         | 60                          |                             |  |  |  |
| voltage                    | Impulse (1.2×50µs)       | Up (kV)      | 150                         |                             |  |  |  |
| Rated frequency            |                          | fr (Hz)      | 60                          |                             |  |  |  |
| Rated short-circuit r      | making current           | Ip (kA)      | 65                          |                             |  |  |  |
| Rated short-time wi        | thstand current          | lk/tk (kA/s) | 25/:                        | 2                           |  |  |  |
| Rated breaking time        | )                        | (cycle)      | 3                           |                             |  |  |  |
| Rated operating sec        | quence                   |              | O-0.3s-CO-                  | 3min-CO                     |  |  |  |
| Control voltage            | Closing coil             | (V)          | DC 1:                       | 25V                         |  |  |  |
|                            | Trip coil                | (V)          | DC 12                       | 25V                         |  |  |  |
| Auxiliary contacts         | Point of contacter       |              | 4a4b, 10a10b                |                             |  |  |  |
|                            | Class                    |              | Class 1                     |                             |  |  |  |
| Trip coil resistance       |                          | (Ω)          | 37±10%                      |                             |  |  |  |
| Closing coil resistan      | ice                      | (Ω)          | 37±10%                      |                             |  |  |  |
| Rated short-circuit I      | oreaking capacity        | (MVA)        | 1169                        |                             |  |  |  |
| Rated opening time         | Rated opening time (sec) |              | ≤ 40                        |                             |  |  |  |
| No-load closing time (sec) |                          | ≤ 60         |                             |                             |  |  |  |
| VI stroke (mm)             |                          | 17~18        |                             |                             |  |  |  |
| Weight                     | Breaker                  | (kg)         | 400                         | )                           |  |  |  |
|                            | Cradle                   | (kg)         | 400                         | )                           |  |  |  |

<sup>\*</sup> Lifetime with maintenance.
\*\* H type is a box type cradle with CB compartment style structure.

# Ratings - 4.76/15kV 40/50kA 1200/2000/3000A

Susol

## VH-05/15



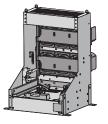
| Item                    |                         |              | VH-05H50C12/20/30 |                     |                   | VH-15H40,50C12/20/30 |            |      |
|-------------------------|-------------------------|--------------|-------------------|---------------------|-------------------|----------------------|------------|------|
| Rated voltage           |                         | Ur (kV)      |                   | 4.76                |                   |                      | 15         |      |
| Rated normal current    |                         | Ir (A)       | 1200              | 2000                | 3300              | 1200                 | 2000       | 3000 |
| Rated frequency         |                         | fr (Hz)      |                   |                     | 50.               | /60                  |            |      |
| Rated short-circuit cu  | rrent                   | Isc (kA)     |                   | 50                  |                   |                      | 40, 50     |      |
| Rated short-time with   | stand current           | Ik/tk (kA/s) |                   | 50/2                |                   |                      | 40/2, 50/2 |      |
| Rated short-circuit bre | eaking capacity         | (MVA)        |                   | 412                 |                   |                      | 1039, 1299 |      |
| Rated short-circuit ma  | aking current           | Ip (kA)      |                   |                     | 2.5 ×Isc (50Hz)   | /2.6×Isc (60Hz)      |            |      |
| Rated breaking time     |                         | (Cycle)      |                   |                     | ;                 | 3                    |            |      |
| Rated withstand         | Power frequency (1 min) | Ud (kV)      |                   | 19                  |                   |                      | 36         |      |
| voltage                 | Impulse (1.2×50µs)      | Up (kV)      |                   | 60                  |                   |                      | 95         |      |
| Rated operating sequ    | ence                    |              | O-0.3s-CO-3min-CO |                     |                   |                      |            |      |
| Control voltage         | Closing coil            | (V)          | DC 125V           |                     |                   |                      |            |      |
|                         | Trip coil               | (V)          |                   |                     | DC                | 125V                 |            |      |
| Auxiliary contacts *    |                         |              | 3a3b              |                     |                   |                      |            |      |
| Rated opening time      |                         | (sec)        | ≤ 0.04            |                     |                   |                      |            |      |
| No-load closing time    |                         | (sec)        | ≤ 0.06            |                     |                   |                      |            |      |
| Lifetime                | Mechanical              |              | 10,000            |                     |                   |                      |            |      |
|                         | Electrical              |              |                   |                     | See               | graph                |            |      |
| Installation version    | Drawout                 |              |                   |                     | H type (fo        | or MESG)             |            |      |
| Phase distance          |                         | (mm)         | 254               |                     |                   |                      |            |      |
| Weight                  | Breaker (MESG, MCSG)    | (kg)         | 230               | 230                 | 265               | 230                  | 230        | 265  |
|                         | Cradle (MESG, MCSG)     | (kg)         | 248               | 248                 | 286               | 248                  | 248        | 286  |
| Applicable standard     |                         |              |                   | ANSI/IEEE Std. C37. | 09, KEPIC EED 110 | 0                    |            |      |

<sup>\*</sup> Two(2) "Early b" auxiliary contact is provided.

# Accessory

## Susol

| Mounting   |      | Accesson                                             | Suppl  | ied as | Domorko                 | nago |  |
|------------|------|------------------------------------------------------|--------|--------|-------------------------|------|--|
| Position   | Туре | Accessory                                            | VL VH  |        | Remarks                 | page |  |
|            | М    | Motor                                                | •      | •      | Attached at the factory | 36   |  |
|            | CC   | Closing Coil                                         | •      | •      | Attached at the factory | 37   |  |
|            | TC   | Trip Coil                                            | •      | •      | Attached at the factory | 38   |  |
|            | A1   | Secondary Trip Coil                                  | Option | Option | Attached at the factory | 39   |  |
|            | Т9   | Current Trip Coil                                    | Option | -      | Attached at the factory | 40   |  |
|            | 19   | Auxiliary Contact 2a2b                               | -      | -      |                         |      |  |
|            | SA   | Auxiliary Contact 4a4b                               | •      | •      |                         |      |  |
|            | (SB) | Auxiliary Contact 6a6b                               | -      | -      | Attached at the factory | 41   |  |
|            |      | Auxiliary Contact 10a10b                             | Option | Option |                         |      |  |
|            | U    | Under Voltage Trip Coil                              | Option | Option | Attached at the factory | 42   |  |
|            | A3   | Position S/W(Test: 1a1b, Connect: 2b)                | Option | Option | Attached at the factory | 43   |  |
|            | A4   | Position S/W(Test: 2a, Connect: 2a)                  | Option | Option | Attached at the factory | 43   |  |
|            | A5   | Position S/W(Test: 1a1b, Connect: 1a1b)              | Option | Option | Attached at the factory | 43   |  |
| Breaker    | A6   | Latch Checking Switch                                | -      | Option | Attached at the factory | 44   |  |
| (Internal) | С    | Counter                                              | •      | •      | Attached at the factory | 44   |  |
|            | A7   | Keylock                                              | Option | Option | Attached at the factory | 45   |  |
|            | A8   | Button Padlock                                       | Option | Option | Attached at the factory | 46   |  |
|            | A9   | Button cover                                         | Option | Option | Attached at the factory | 47   |  |
|            | AA   | Lead Wire: A/B type connector                        | Option | Option | Attached at the factory | 48   |  |
|            | AB   |                                                      | · '    |        | -                       | 48   |  |
|            |      | Plug/Terminal for Lead Wire                          | Option | Option | Attached at the factory |      |  |
|            | AC   | Plug Interlock                                       | Option | Option | Attached at the factory | 49   |  |
|            | AD   | Padlock (H type)                                     | Option | Option | Attached at the factory | 49   |  |
|            | AE   | MOC(Mechanical Operated Cell Switch                  | Option | Option | Attached at the factory | 50   |  |
|            | AF   | Locking Magnet                                       | Option | Option | Attached at the factory | 51   |  |
|            | AJ   | Door Interlock                                       | Option | Option | Attached at the factory | 61   |  |
|            | AO   | Lead Wire: A type connector<br>(Special Color: Blue) | Option | -      | Attached at the factory | 63   |  |
|            | AP   | Trip Coil Monitoring Contact                         | •      | •      | Attached at the factory | 52   |  |
|            | CTD1 | Condenser Trip Device(AC110V)                        | Option | Option | -                       | 54   |  |
|            | CTD2 | Condenser Trip Device(AC220V)                        | Option | Option | -                       | 54   |  |
| Breaker    | UDC1 | UVT Time Delay Controller(AD110V)                    | Option | Option | -                       | 55   |  |
| (External) | UDC2 | UVT Time Delay Controller(AD220V)                    | Option | Option | -                       | 55   |  |
| /          | UDC3 | UVT Time Delay Controller(AD48V)                     | Option | Option | -                       | 55   |  |
|            | CTU  | Coil Test Unit                                       | Option | Option | -                       | 54   |  |
|            | TM   | Temperature Monitoring                               | Option | Option | -                       | 56   |  |






<sup>\* :</sup> Basic Installation

# Susol

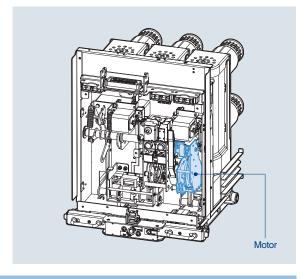
| Mounting | _    |                                                   | Suppl  | lied as |                         |      |
|----------|------|---------------------------------------------------|--------|---------|-------------------------|------|
| Position | Type | Type Accessory                                    |        | VH      | - Remarks               | page |
|          | A1   | ES(Earthing Switch)\ without Option               | Option | Option  | Attached at the factory | 57   |
|          | A2   | ES(Earthing Switch) with Position Switch(2a2b)    | Option | Option  | Attached at the factory | 57   |
|          | A4   | ES(Earthing Switch) with Position Switch(6a6b)    | Option | Option  | Attached at the factory | 57   |
|          | A5   | ES(Earthing Switch)<br>with Keylock               | Option | Option  | Attached at the factory | 58   |
|          | A6   | ES(Earthing Switch) with Locking magnet: DC110V   | Option | Option  | Attached at the factory | 58   |
|          | A7   | ES(Earthing Switch) with Locking magnet: DC220V   | Option | Option  | Attached at the factory | 58   |
|          | A8   | ES(Earthing Switch) with Locking magnet: DC125V   | Option | Option  | Attached at the factory | 58   |
|          | A9   | ES(Earthing Switch) with Locking magnet: DC24V    | Option | Option  | Attached at the factory | 58   |
|          | AA   | ES(Earthing Switch) with Locking magnet: DC48V    | Option | Option  | Attached at the factory | 58   |
| Cradle   | AB   | ES(Earthing Switch) with Locking magnet: AC48V    | Option | Option  | Attached at the factory | 58   |
|          | AC   | ES(Earthing Switch) with Locking magnet: AC110V   | Option | Option  | Attached at the factory | 58   |
|          | AD   | ES(Earthing Switch) with Locking magnet: AC220V   | Option | Option  | Attached at the factory | 58   |
|          | AE   | Shutter padlock                                   | Option | Option  | Attached at the factory | 59   |
|          | AF   | TOC(Truck Operated Cell Switch)                   | Option | Option  | Attached at the factory | 59   |
|          | AG   | MOC(Mechanical Operated Cell Switch)              | Option | Option  | Attached at the factory | 60   |
|          | AH   | Door                                              | Option | Option  | Attached at the factory | 60   |
|          | AJ   | Door Interlock                                    | Option | Option  | Attached at the factory | 61   |
|          | AK   | Door Emergency Push Button                        | Option | Option  | Attached at the factory | 61   |
|          | AL   | Temperature Sensor                                | Option | Option  | Attached at the factory | 62   |
|          | AM   | Type H Lead Wire 4a4b (Normal cable)              | Option | Option  | Attached at the factory | 63   |
|          | AN   | Type H Lead Wire 10a10b<br>(Normal cable)         | Option | Option  | Attached at the factory | 63   |
|          | AO   | Type H Lead Wire 4a4b)<br>(Flame retardant cable) | Option | Option  | Attached at the factory | 63   |
|          |      | Door padlock                                      | Option | Option  | Attached at the factory | 63   |

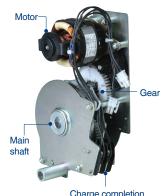




# **Accessory**

Susol


## **Motor: M**

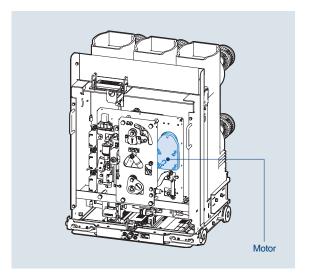

Installed inside of a breaker as standard

## **VL** type

 Charge the closing spring of a circuit breaker by the external power source. When the charging is complete, control power of the motor will be "OFF" by the built-in Limit S/W. Without the external power source, charge manually.

Operating voltage range (IEC 60947) 85%~110%Vn






| Charge  | completion |
|---------|------------|
| contact |            |

|                            | VL type       |                         |         |         |         |        |         |         |  |
|----------------------------|---------------|-------------------------|---------|---------|---------|--------|---------|---------|--|
| land to talk a see (A for) | DC 24~        | DC 48~                  | DC 110V | DC 125V | DC 220V | AC 48V | AC 100~ | AC 200~ |  |
| Input voltage (Vn)         | 30V           | 60V                     | DCTIOV  | DC 125V | DC 220V | AC 46V | 130     | 250V    |  |
| Load current (A)           | ≤ 5           | ≤ 3                     | ≤ 1     | ≤ 1     | ≤ 0.5   | ≤ 3    | ≤ 1     | ≤ 0.5   |  |
| Starting current (A)       |               | 5 times of load current |         |         |         |        |         |         |  |
| Charge time                | Within 5 sec. |                         |         |         |         |        |         |         |  |

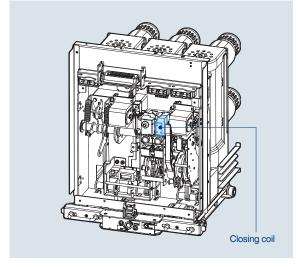
Note) Rated operation and control voltage range, see page 40.

## VH type





|                      |                | VH Type |         |         |        |         |         |  |  |  |
|----------------------|----------------|---------|---------|---------|--------|---------|---------|--|--|--|
| Input voltage (Vn)   | DC 48V         | DC 110V | DC 125V | DC 220V | AC 48V | AC 110V | AC 220V |  |  |  |
| Load current (A)     | ≤ 6            | ≤ 3     | ≤ 3     | ≤ 2.6   | ≤ 6    | ≤ 3     | ≤ 2.6   |  |  |  |
| Starting current (A) | ≤ 30           | ≤ 20    | ≤ 20    | ≤ 17    | ≤ 30   | ≤ 20    | ≤ 17    |  |  |  |
| Charge time          | Within 12 sec. |         |         |         |        |         |         |  |  |  |


Note) Rated operation and control voltage range, see page 40.

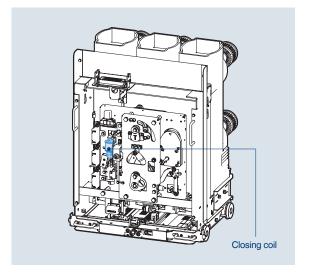
# **Closing Coil: C**

Installed inside of a breaker as standard

### **VL** type

 It is a control device which closes a circuit breaker, when applying voltage continuously or instantaneously over 200ms to the coil control terminals.






|                               | VL type       |               |         |         |         |        |                |                 |
|-------------------------------|---------------|---------------|---------|---------|---------|--------|----------------|-----------------|
| Input voltage (Vn)            | DC 24~<br>30V | DC 48~<br>60V | DC 110V | DC 125V | DC 220V | AC 48V | AC 100~<br>130 | AC 200~<br>250V |
| Power consumption (inrush, W) |               |               |         | 20      | 00      |        |                |                 |
| Power consumption (steady, W) |               |               |         | ≤       | 5       |        |                |                 |

Note) Rated operation and control voltage range, see page 40.

### **VH** type

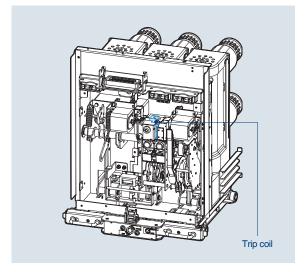
 It is a control device which closes a circuit breaker, when applying voltage continuously about 45ms to the coil control terminals.
 Electrical pumping preventing circuit is built in.





|                    | VH Type |         |         |         |        |         |         |  |
|--------------------|---------|---------|---------|---------|--------|---------|---------|--|
| Input voltage (Vn) | DC 48V  | DC 110V | DC 125V | DC 220V | AC 48V | AC 110V | AC 220V |  |
| Rated current (A)  | ≤ 8     | ≤ 3     | ≤ 3     | ≤ 2.5   | ≤ 8    | ≤ 3     | ≤ 2.5   |  |

Note) Rated operation and control voltage range, see page 40.


Susol

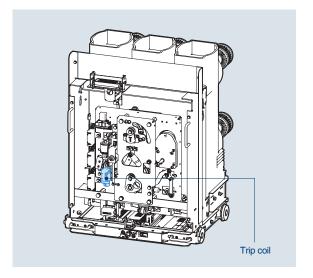
### **Trip Coil: T**

Installed inside of a breaker as standard

#### **VL** type

- It is a control device which trips a circuit breaker from remote place, when applying voltage continuously or instantaneously over 35ms to coil control terminals.
- When UVT coil is installed, its location is changed.






|                               | VL type |            |         |         |         |         |         |         |  |
|-------------------------------|---------|------------|---------|---------|---------|---------|---------|---------|--|
| Input voltage (Vn)            | DC 24~  | DC 48~     | DC 110V | DC 125V | DC 220V | AC 48V  | AC 100~ | AC 200~ |  |
| input voltage (vii)           | 30V     | 60V        | DOTTOV  |         | DO LLOV | 7.0 101 | 130     | 250V    |  |
| Power consumption (inrush, W) |         |            |         | 20      | 00      |         |         |         |  |
| Power consumption (steady, W) |         | ≤ <b>5</b> |         |         |         |         |         |         |  |

Note) Rated operation and control voltage range, see page 40.

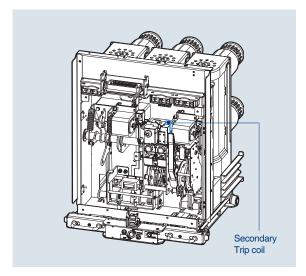
#### VH type

 It is a control device which trips a circuit breaker, when applying voltage continuously or instantaneausly over 35ms to the coil control terminals.





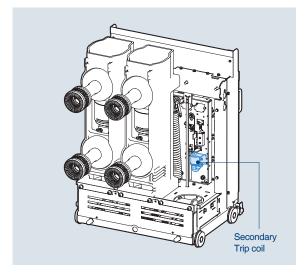
|                    | VH Type |         |         |         |        |         |         |  |
|--------------------|---------|---------|---------|---------|--------|---------|---------|--|
| Input voltage (Vn) | DC 48V  | DC 110V | DC 125V | DC 220V | AC 48V | AC 110V | AC 220V |  |
| Rated current (A)  | ≤ 8     | ≤ 3     | ≤ 3     | ≤ 2.5   | ≤ 8    | ≤ 3     | ≤ 2.5   |  |


Note) Rated operation and control voltage range, see page 40 .

### **Secondary Trip Coil: A1**

Installed inside of a breaker as an option

#### **VL** type


- It is a control device which trips a circuit breaker doubly from the outside. If the trip coil (T) fails, it can trip a circuit breaker safely.
- · Trip coil: Install it at existing location.
- Secondary trip coil: Install it on the right side of the trip coil.
- It is not available with UVT coil when installing secondary trip coil.





|                               | VL type |        |         |         |         |         |         |         |  |
|-------------------------------|---------|--------|---------|---------|---------|---------|---------|---------|--|
| Input voltage (Vn)            | DC 24~  | DC 48~ | DC 110V | DC 125V | DC 220V | AC 48V  | AC 100~ | AC 200~ |  |
| input voitage (vii)           | 30V     | 60V    |         |         | DOZZZOV | 7.0 101 | 130     | 250V    |  |
| Power consumption (inrush, W) |         |        |         | 20      | 00      |         |         |         |  |
| Power consumption (steady, W) |         |        |         | <       | 5       |         |         |         |  |

- It is a control device which trips a circuit breaker doubly from the outside. If the trip coil (T) fails, it can trip a circuit breaker safely.
- It is not available with UVT coil when installing secondary trip coil.

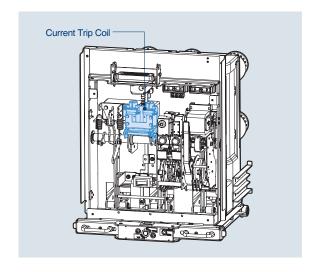




|                    | VH Type |         |         |         |        |         |         |  |
|--------------------|---------|---------|---------|---------|--------|---------|---------|--|
| Input voltage (Vn) | DC 48V  | DC 110V | DC 125V | DC 220V | AC 48V | AC 110V | AC 220V |  |
| Rated current (A)  | ≤ 8     | ≤ 3     | ≤ 3     | ≤ 2.5   | ≤ 8    | ≤ 3     | ≤ 2.5   |  |

Susol

### Rated operation and control voltage range


| lan       |            |                                | Susol VCB           |                     | Damada  |
|-----------|------------|--------------------------------|---------------------|---------------------|---------|
| HE        | em         | VL: 7.2kV 8/12.5kA             | VL: 20/25kA         | VH                  | Remarks |
| Motor     | AC         | 85~110%                        | 85~110%             | 85~110%             |         |
| WOO       | DC 75~110% |                                | 85~110%             | 85~110%             |         |
| Closing   | AC         | 85~110%                        | 85~110%             | 85~110%             |         |
| Olosing   | DC         | 75~125%                        | 85~110%             | 85~110%             |         |
| Trip      | AC         | 60~125%                        | 85~110%             | 85~110%             |         |
| Пр        | DC         | 60~125%                        | 70~110%             | 70~110%             |         |
| Applied s | standards  | IEC62271-100 (2008)<br>KSC4611 | IEC62271-100 (2008) | IEC62271-100 (2008) | -       |

### **Current Trip Coil**

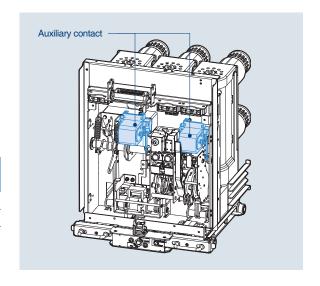
Installed inside of a breaker as an option

### VL type: AV, AW

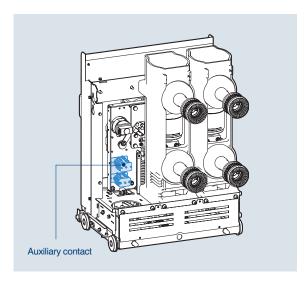
- This trip coil uses the output of the CT as its control power source and is used with over current relay in combination. Two current trip coils are supplied.
- $\cdot$  Coil impedance(Z) is like below
- 1A: 160  $\mathcal Q$  or less, Operating current AC 1A (AV)
- 5A:  $6\varOmega$  or less, Operating current is AC 5A (AW)
- CT must be installed at load side.
   If it is installed at bus side there is the danger of malfunction or damage to CT.
- Don't disconnect the control power connector on main power is live condition at connect position.
   Otherwise there is the danger of malfunction or damage to CT.
- $\star$  CT is recommended to use 15VA 5P10 and more.






#### Installed inside of a breaker as an option

# **Auxiliary Contact: SA**


### **VL** type

- It is a contact used to monitor ON/OFF status of a breaker from remote place.
- The auxiliary contacts supplied as standard configuration is 4a4b. 10a10b is also available on request.
- For 7.2kV 8/12.5kA VCB standard configuration is 2a2b. 4a4b and 6a6b are optional.

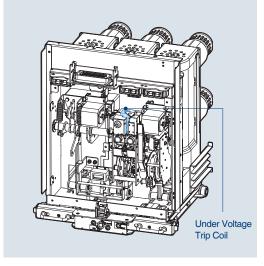
| Item     | VL: 7.2kV<br>8/12.5kA | VL: 20/25kA,<br>VH |
|----------|-----------------------|--------------------|
| Standard | 2a2b                  | 4a4b               |
| Optional | 4a4b, 6a6b            | 10a10b             |

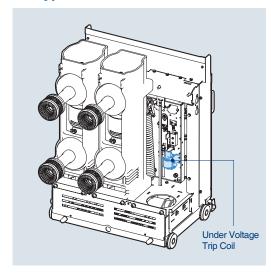









|               | VL/VH Type |      |    |                    |                |  |  |  |  |  |  |
|---------------|------------|------|----|--------------------|----------------|--|--|--|--|--|--|
|               | Item       |      |    | Inductive load (A) | Remarks        |  |  |  |  |  |  |
|               | AC         | 250V | 10 | 5                  |                |  |  |  |  |  |  |
| Contact       | AO         | 125V | 10 | 5                  |                |  |  |  |  |  |  |
| Contact       |            | 250V | 10 | 5                  | For all models |  |  |  |  |  |  |
| configuration | DC         | 125V | 10 | 5                  |                |  |  |  |  |  |  |
|               |            | 30V  | 10 | 5                  |                |  |  |  |  |  |  |


Susol

# **Under Voltage Trip Coil: U**

Installed inside of a breaker as an option

#### **VL** type





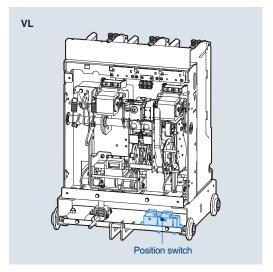


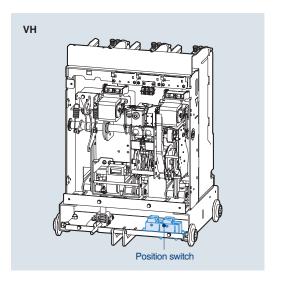
VL type

- It is installed inside of a breaker to trip when the main power or control power voltage drops below certain value. Instantaneous type is only available with UVT coil and Time delay type is available by connecting UVT coil and UVT time delay controller.
- The closing of a circuit breaker is impossible mechanically or electrically if control power is not supplied to UVT. To close the circuit breaker, 65~85% of rated voltage should be applied.
- UVT and secondary trip coil will not be selected together.
- 1. UVT rated voltage and characteristic
  - Operating voltage range: Pick up 0.65~0.85Vn, Drop out 0.4~0.6Vn
  - Operating voltage ranges based on the minimum value of each rated voltage (Vn)



VH type


|                               | VL type       |               |         |         |         |        |                |                 |  |
|-------------------------------|---------------|---------------|---------|---------|---------|--------|----------------|-----------------|--|
| Input voltage (Vn)            | DC 24~<br>30V | DC 48~<br>60V | DC 110V | DC 125V | DC 220V | AC 48V | AC 100~<br>130 | AC 200~<br>250V |  |
| Power consumption (inrush, W) | 200           |               |         |         |         |        |                |                 |  |
| Power consumption (steady, W) | ≤ <b>5</b>    |               |         |         |         |        |                |                 |  |

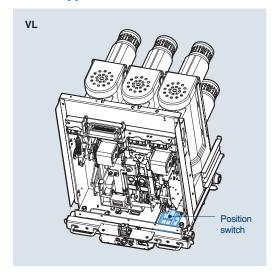

|                               | VH Type |                                                      |  |  |  |  |  |  |  |
|-------------------------------|---------|------------------------------------------------------|--|--|--|--|--|--|--|
| Input voltage (Vn)            | DC 48V  | DC 48V DC 110V DC 125V DC 220V AC 48V AC 110V AC 220 |  |  |  |  |  |  |  |
| Power consumption (inrush, W) |         | 350                                                  |  |  |  |  |  |  |  |
| Power consumption (steady, W) | ≤ 10    |                                                      |  |  |  |  |  |  |  |

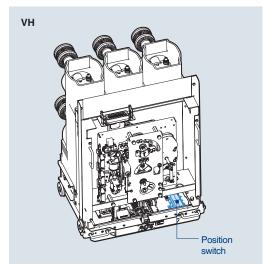
# Position Switch: A3, A4, A5

Installed inside of a breaker as an option

### **VL/VH type - H Cradle**



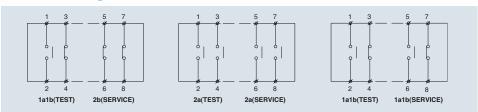



Large model (VH)

• This switch is used to indicate the breaker position (CONNECT, TEST), and contact configuration is 2a2a or 2a2b, 1a3b.

#### **VL/VH type - H Cradle**



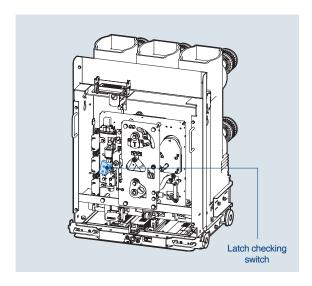





Large model (VH)

### **Contact configuration**




Susol

### Latch checking switch: A6

Installed inside of a breaker as an option

#### **VH** type

- This switch works in conjunction with the mechanism of the breaker. It checks if the breaker is ready to be closed.
- When the mechanism is OFF and the closing spring is at charged status the switch becomes "ON", which means the mechanism is ready to be closed.
- If the latch is not in a proper position the switch prevents the breaker from closing.
   In case of VH type it is connected internally in series with the closing coil.





### **Counter: C**

Installed inside of a breaker as standard

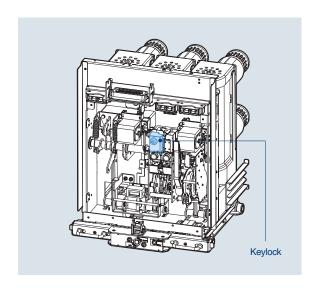
#### **VL/VH type**

• It displays the total number of ON/OFF operations of a breaker.





Installed inside of a breaker as an option

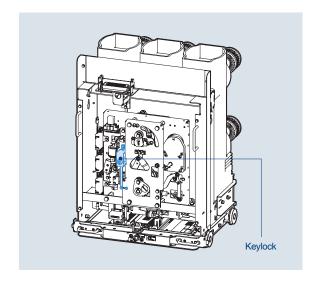

### **VL** type

**Keylock: A7** 

• The key is to unlock the locking device first to close the breaker electrically and mechanically.

#### \*How to operate

- It is not possible to pull out the key in the unlocked position, possible only in locked status.
- Pushing "OFF" switch of a breaker turn the key counter-clockwise to the locked position and pull it out.
- It is not possible to close the breaker electrically and mechanically in the locked position.
- Insert the key and turn clockwise and then the breaker can be closed electrically and mechanically.





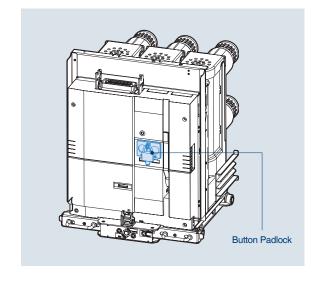

### VH type

#### \*How to operate

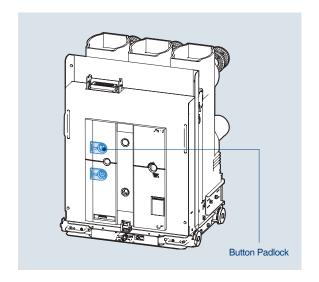
- It is not possible to pull out the key in the unlocked position, possible only in locked status.
- Trip the breaker first and then turn the key counter-clockwise to the locked position and pull it out.
- It is not possible to close the breaker electrically and mechanically in the locked position.






Susol

### **Button Padlock: A8**


Installed outside of a breaker as an option

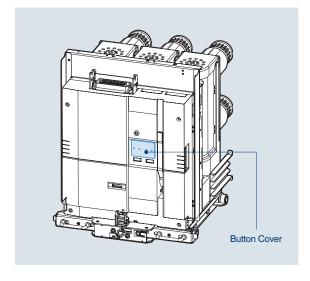
### **VL** type

- It is to prevent manual operation of ON/OFF button due to user's wrong handling.
- It is not possible to handle ON/OFF operation under the "Button lock" status.
- \* Key lock is not supplied.



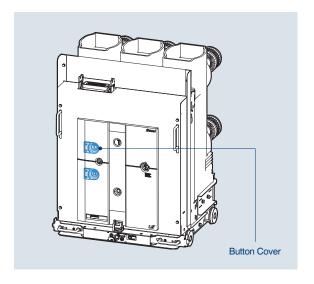







### **Button Cover: A9**

Installed outside of a breaker as an option


### **VL** type

- It is a protection cover to prevent an accident due to unintended operation of ON/OFF button.
- Use the push-bar to operate the ON/OFF button.



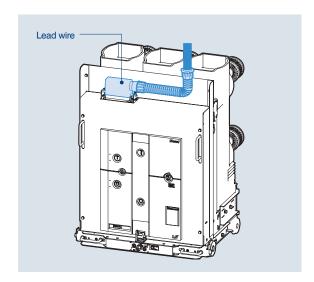






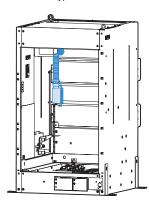





Susol

#### Lead wire: AA

Supplied separately from a breaker as an option


#### **VL/VH** type

- It is to connect with the control circuit of a breaker from outside. (supply wire length: 2m)
- ${}^{\raisebox{-.4ex}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{\raisebox$
- B type connector is supplied for P type of VH VCB.
- In case of H type breaker of VL and VH models the Lead wire is installed in the cradle when supplied.










#### Supply ways of Lead wires by VCB model

| VCB model Cradle type | Р | E        | Н                                                           |                                                             |
|-----------------------|---|----------|-------------------------------------------------------------|-------------------------------------------------------------|
| VL                    |   | Enclosed | Enclosed in the breaker<br>Installed in the cradle (option) |                                                             |
| VH                    |   | Enclosed | d in the breaker                                            | Enclosed in the breaker<br>Installed in the cradle (option) |

### Plug/Terminal for lead wire

Supplied separately from a breaker as an option

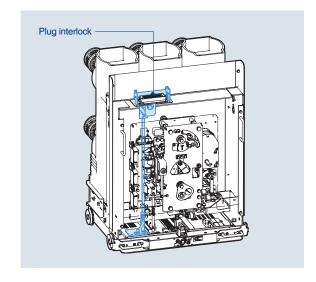
### **VL/VH** type



A type connector



B type connector


- It is connector to connect with the connector installed in the breaker. (supply connectors and terminal only for lead wire)
- $\boldsymbol{\cdot}$  Type of connector is depends on the type of connector installed in the breaker- A or B.

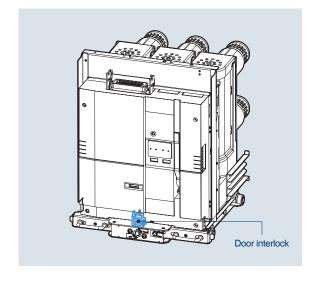
### Plug interlock: AC

Installed inside of a breaker as an option

#### **VL/VH** type

- It checks if the control power connector on the cradle (H type) is connected with the connecting terminal of the breaker before the proceeding of draw-in or out.
- It is not allowed to seperate the control power connector from the breaker in the position of draw-in /out or CONNECT, but TEST position.






### Padlock/Door racking interlock: AD

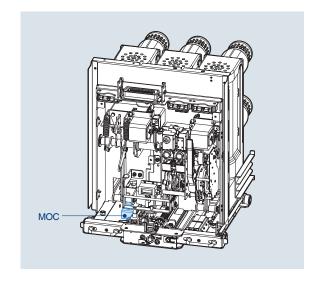
Installed outside of a breaker as an option

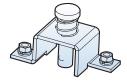
### **VL/VH** type

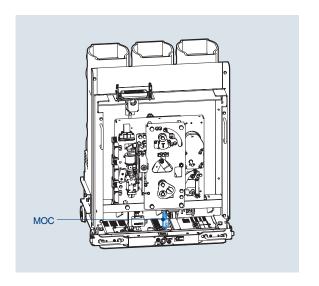
- With this door options for H type cradle draw- in/ out is allowed only when the door is closed.
- If draw-in /out is necessary when the door is open, use the operation lever put in the slot of the breaker handle.
   Insert it into the hole in the bottom of door interlock.
- Padlock is also optional, which can lock to prevents the draw-in/out of the breaker in the position of TEST and CONNECT.

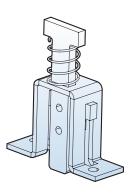





Susol


### **MOC** drive device: AE


Installed inside of a breaker as an option

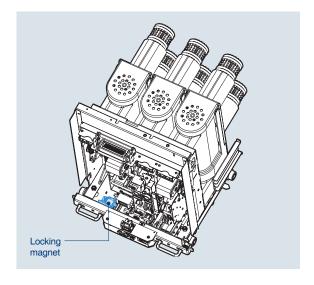

### **VL** type

- It must be installed in the breaker to drive the MOC installed in H type cradle.
- MOC, Mechanically operated cell switch is the device to indicates the Closed/Trip status of VCB in 'CONNECT' position only.
- This MOC drive device in the breaker should be installed when MOC in the cradle is used.

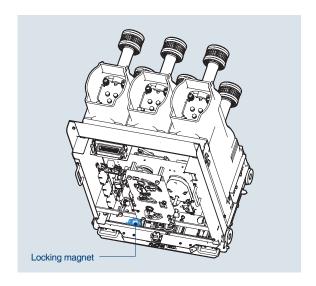









# **Locking magnet: AF**


Installed inside of a breaker as an option

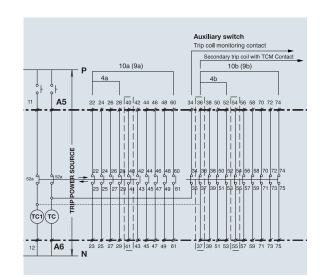
### **VL** type

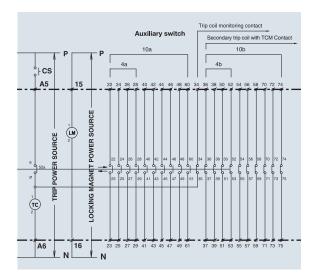
- It allows the drawing-in of the breaker in the TEST position under the condition that the control power connector on the cradle (H type) is connected with the connecting terminal of the breaker and the power is supplied.
- During the drawing-in or in the CONNECT position draw-in/out is allowed without supplying power.
- \* Control power rating is the same as that of a motor.








Susol

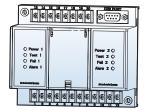

### Trip coil monitoring contact: AP

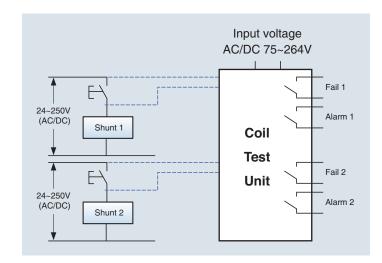
Installed inside of a breaker as an option

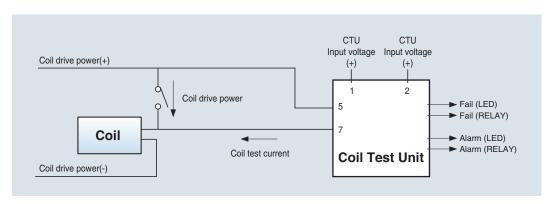
#### **VL** type

- Device for monitoring the functions of the trip coils.
- Supplied as standard for VL model and optional for VH model.
- To monitor the trip coils connect its terminals with the trip coil monitoring relay as shown on the circuit diagram.
- If the trip coil is normal: closed-circuit consisting
- If the trip coil is damaged: open circuit
- 1) Terminals A5 and A6 monitor the trip coils in closed position of the breaker.
- Terminal A6 and aux. contact terminal 34 monitor the trip coils in trip position of the breaker.
- Coil Test Unit is opional, which enable monitoring the coils by connecting in parallel with the trip coil operation switch.
- In case Secondary Trip Coil Monitoring contact, Trip Coil T1,T2,T3 are available.







#### **Coil Test Unit: CTU**


Installed outside of a breaker as an option

- When no current flows through the coil it gives the test current which does not cause the coil to operate to check whether the coil is disconnected or not.
- If the test current flows normally: coil normal
- If the test current does not flow through: coil disconnected
- \* As it is connected in parallel with the control part of the coil the normal operation of the coil is not affected.
- \* Monitoring of the running coils is not possible.
- \* One test unit can monitor up to two coils.
- 1. Input voltage: AC/DC 75V~264V
- 2. Contact output
  - 1)  $2 \times a$  contacts for Fail indication and  $2 \times a$  contacts for Alarm
  - 2) 250Vac/10A Resistive, 30Vdc/10A Resistive
- 3. Disconnection test cycle is 12 seconds (Test LED blinks)
- 4. The default operation
  - If Fail happens (coil disconnected), Fail LED turns on and the Fail contacts become short state. If Fail happens three times in series, Alarm LED turns on and the Alarm contacts become short state. In order to clear the Alarm status push up DIP switch on the front and then push down it (Off  $\rightarrow$  On  $\rightarrow$  Off)





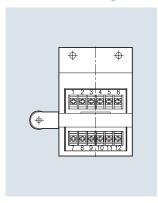


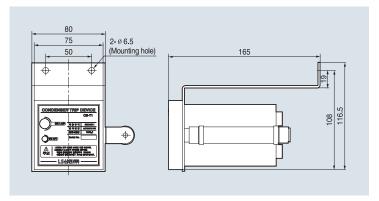


Susol

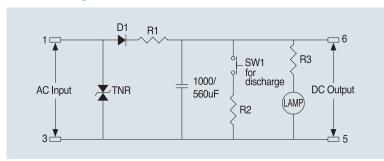
### **Condenser trip device: CTD**

Installed outside of a breaker as an option


#### **Ratings**


| Ratings                       | Specification |               |  |
|-------------------------------|---------------|---------------|--|
| Model                         | CB - T1       | CB - T2       |  |
| Rated input voltage (V)       | AC 100/110    | AC 200/220    |  |
| Frequency (Hz)                | 50/60         | 50/60         |  |
| Rated charge voltage (V)      | 140/155       | 280/310       |  |
| Charging time                 | Within 10sec. | Within 10sec. |  |
| Trip possible time            | Within 30sec. | Within 30sec. |  |
| Range of Input voltage        | 85%~110%      | 85%~110%      |  |
| Condenser capacity ( $\mu$ F) | 1,000         | 560           |  |

- It gets a circuit breaker tripped electrically within regular time when control power supply is broken down and is used with Shunt coil, SHT.
   In case there is no DC power, It can be used as the rectifier which supplies DC power to a circuit breaker by rectifying AC power.
- Tripping within 30 seconds on the power failure is possible. However after that automatic trip circuit must be configured separately in the switchgear.




#### **Terminal arrangement** External dimension





### **Circuit diagram**



### **UVT Time delay: UDC**

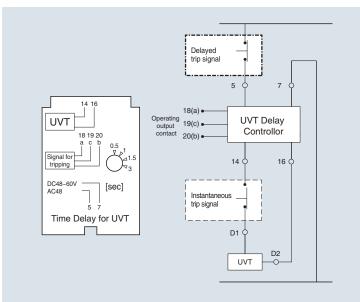
Installed outside of a breaker as an option

- UVT time delay, UDC is to delay the trip signal from UVT.

  Without UDC the breaker will be tripped instantaneously by the trip signal from UVT installed inside of the breaker even in the the momentary power failure.
- UDC can delay the trip time to avoid this unintended instantaneous trip in the event of such power failure.
- It can be installed on the cradle or inside of the switchgear.
- UDC provides output contacts for indication of trip status due to the UVT coil inside of the breaker. b contact is closed at normal state and a contact is closed at trip.



#### 1. Characteristics


| Rated voltage (Vn) |         |         | Opration voltage range (V) |             | Consumption (VA or W) |                | Time delay     |
|--------------------|---------|---------|----------------------------|-------------|-----------------------|----------------|----------------|
|                    | DC (V)  | AC (V)  | Pick up                    | Drop out    | Inrush                | Steady - state | (ms)           |
|                    | 48~60   | 48      |                            |             |                       |                |                |
|                    | 100~130 | 100~130 | 0.65~0.85 Vn               | 0.4~0.65 Vn | 200                   | ≤ 5            | 0.5, 1, 1.5, 3 |
|                    | 200~250 | 200~250 |                            |             |                       |                |                |

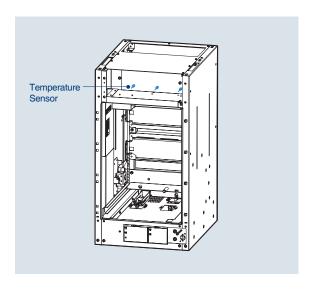
<sup>-</sup> Operating voltage ranges are based on the minimum value of each rated voltage (Vn)

#### 2. Ratings of output contacts

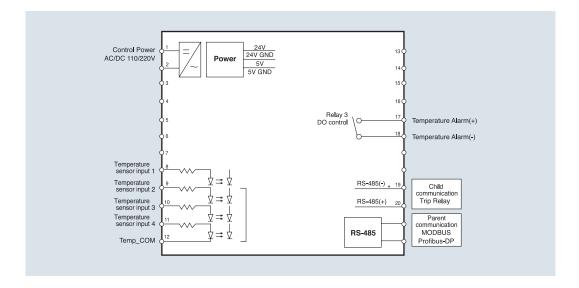
| Rated voltage (V) | Rated current (A), Resistive load | Max. switching voltage (A) | Max. switching current (A) |  |
|-------------------|-----------------------------------|----------------------------|----------------------------|--|
| 24V DC            | ≤ 12                              | 110\/ DC                   |                            |  |
| 120V AC           | ≤ 12                              | 110V DC                    | 15                         |  |
| 250V AC           | ≤ 10                              | 250V AC                    |                            |  |

#### 3. Wiring diagram



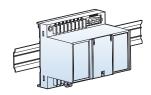

Susol

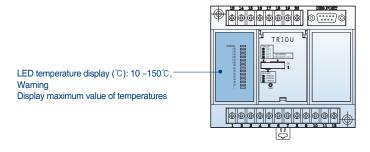
# Temperature sensor and monitoring unit: TM

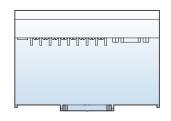

Installed outside of a breaker as an option

#### **VL/VH type**

- Temperature Alarm Unit displays the input temperature detected through the temperature sensor installed in H-type cradle.
- Temperature sensor can be installed up to three (R, S, T phase).
- Temperature Alarm Unit converts the temperatures detected from the senser in the cradle and displays the maximum value and can transmit it throug communication.
- If the input temperature is above standard it may cause alarm.
- Temperature Alarm Unit supports Modbus/ RS-485 communication and contact us Profibus-DP communication.



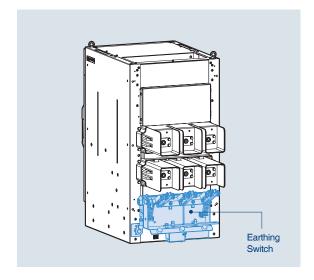






Temperature sensor and monitoring unit







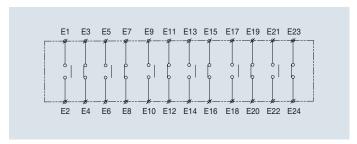

### **Earthing Switch: A1**

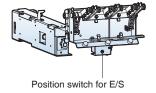
Built-in a cradle as an option

#### **VL/VH** type

- For the safety during the maintenance of switchgear in the position of TEST/Drawout discharge the charging current in the load side of a VCB with this earthing switch.
   It is available onlt for H type drawout breaker.
- \* Regarding the operations of earthing switch and related accessories see the instruction manual.
- \* Applicable Standards: IEC 62271-102







### Position switch for Earthing Switch: A2, A4

Built-in a cradle as an option

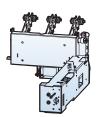
- In case of using earthing switch it can be added to indicate the ON / OFF status of the earthing switch.
- \*\* Contact configuration: 2a2b, 6a6b

### Circuit diagram





Susol

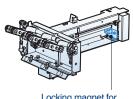

### **Keylock for Earthing Switch: A5**

Built-in a cradle as an option

- In case of using earthing switch it can be added for two types of interlocking.
- 1) Interlock to keep opening
- 2) Interlock to keep earthing



Keylock for earthing switch



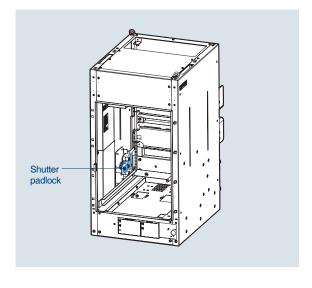

# Locking magnet for Earthing Switch: A6~AD

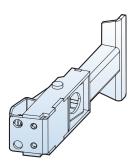
Built-in a cradle as an option

- In case of using earthing switch it can be added to prevent the earthing switch from opening or earthing before it is energized.
- Verify if the locking magnet is energized before opening or earthing the earthing switch.
- · Control voltage
- DC 24V / DC 48V / DC 110V / DC 125V / DC 220V
- AC 48V / AC 110V / AC 220V






Locking magnet for Earthing Switch


### **Shutter padlock: AE**

Built-in a cradle as an option

#### **VL/VH** type

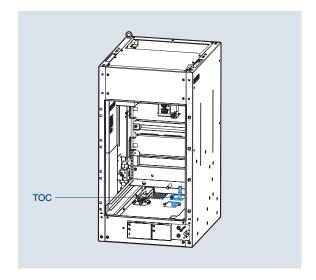
- It is the locking device to lock the primary and secondary shutter in closed state for safety while the breaker is drawn out for maintenance.
- When the breaker is drawn in, the shutter is automatically opened.
- There is a hole for padlock to lock the shutter.
- It can be applied only to H type cradle.

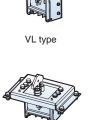




### Truck operated cell switch (TOC: AF)

Built-in a cradle as an option


#### **VL/VH** type


- This auxiliary switch is used to indicate the 'CONNECT' position of VCB. It is installed in the bottom of a H type cradle and operated by the frame of a breaker.
- TOC is consisted of 4 cell switches with changeover contacts as below diagram.

### **Circuit diagram**



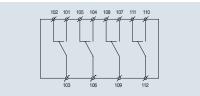
a Contact: 122-123, 125-126, 128-129, 131-132, b Contact: 121-123, 124-126, 127-129, 130-132



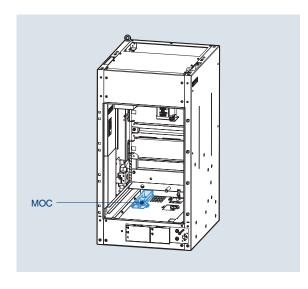


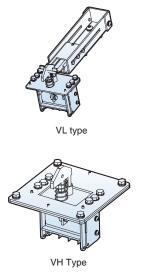
VH Type

Susol


# Mechanical Operated Cell Switch (MOC: AG)

Built-in a cradle as an option


#### **VL/VH** type

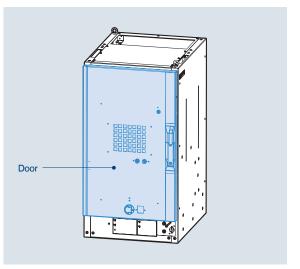

- This auxiliary switch is used to indicate the Close/Trip of VCB. It is operated mechanically at the CONNECT position and installed in the bottom of a H type cradle and operated by the frame of a breaker.
- MOC is consisted of 4 cell switches with changeover contacts as below diagram.

#### **Circuit diagram**



a Contact: 101-103, 104-106, 107-109, 110-112, b Contact: 102-103, 105-106, 108-109, 111-112





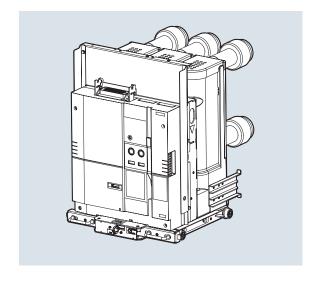

**Door: AH** 

Built-in a cradle as an option

#### **VL/VH type**

- · It is outside door for H type cradle.
- · Accessories are available for the door.



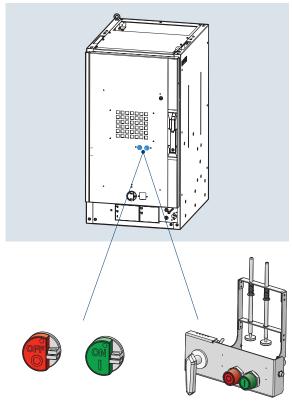



### **Door Interlock: AJ**

Built-in a cradle as an option

### **VL/VH** type

 When the Door is installed to H type cradle, this door interlock prevents opening it at CONNECT position.




### **Door Emergency Push button: AK**

Built-in a cradle as an option

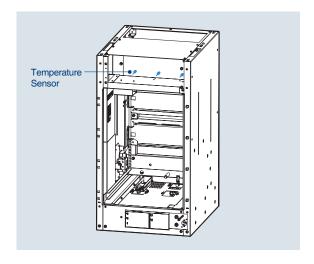
### VL/VH type

- It is used to enable the Close/Trip of the breaker manually from outside of the door installed to H type cradle during an emergency.
- Push the ON/OFF button by ON/OFF handle supplied seperately.








Susol

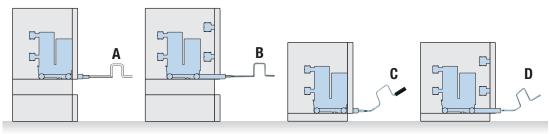
### **Temperature Sensor: AC**

Built-in a cradle as an option

#### **VL/VH** type

- This sensor is used to detect the temperature in H-type cradle combined with Temperature monitoring unit.
- It can be installed up to three (R, S, T phase).



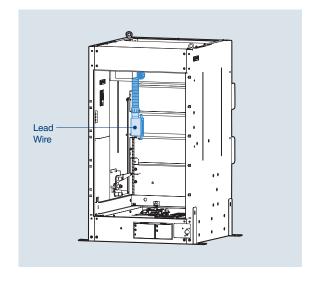



### **Racking In/Out handle**

Susol VCB offers various kinds of handle suitable for each use of types and models. The order can be proceeded with the code below and ordering quantity is flexibly adjustable.

| Туре | Cradle |   | Racking in/out handle | Charging handle | Operating handle for earthing S/W |
|------|--------|---|-----------------------|-----------------|-----------------------------------|
| N/I  | Н      | А | 55223172407           | Netropuired     |                                   |
| VL   |        | В | 55223172403           | Not required    |                                   |
| VH   | К      | С | 55223172405           | 55213143006     |                                   |
|      |        | D | 55223172406           |                 | 0                                 |

### Racking in/out handle for H, K cradle

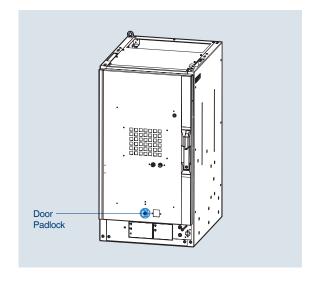



### Type H Cradle Lead Wire: AM~AO

Built-in a cradle as an option

### **VL/VH** type

- In case of H type breaker of VL and VH models the Lead wire is installed in the cradle when supplied.
- 4a4b or 10a10b contacts are selectable according to the auxiliary contact of the breaker.
   Flame retardant cable is used for 4a4b.




#### **Door Padlock**

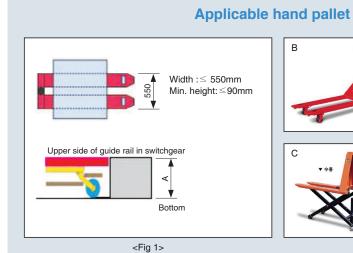
#### Built-in a cradle as an option

#### **VL/VH type**

- It is supplied with a door for H type cradle as standard.
- It can be locked by seperate padlock to prevent entering the maunal handle.






Susol

# **Auxiliary guide frame**

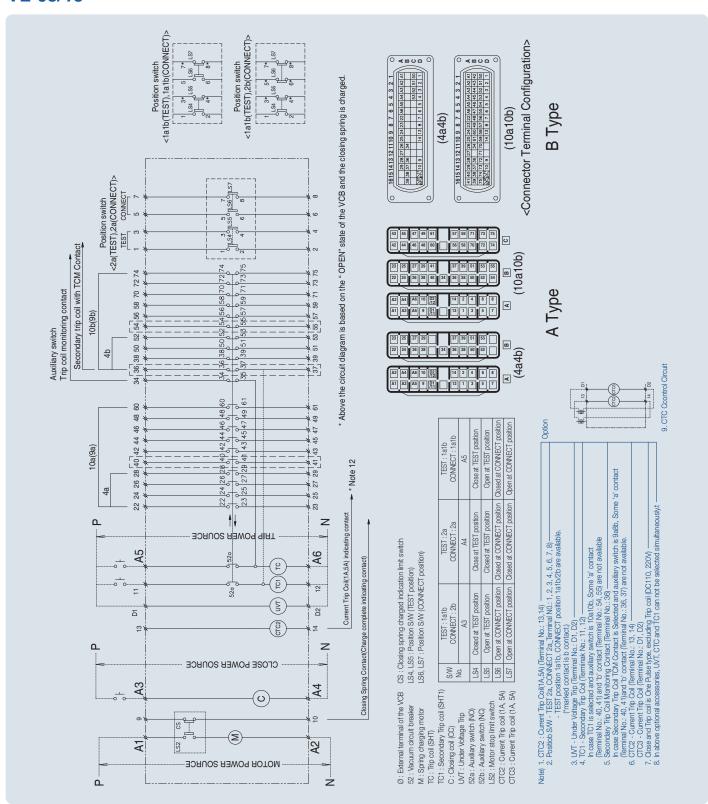
- · Auxiliary guide frame is provided in order to move safely 36/40.5kV breaker into the switchgear.
- · It can be used in combination with the hand pallet which meets the requirement shown below.







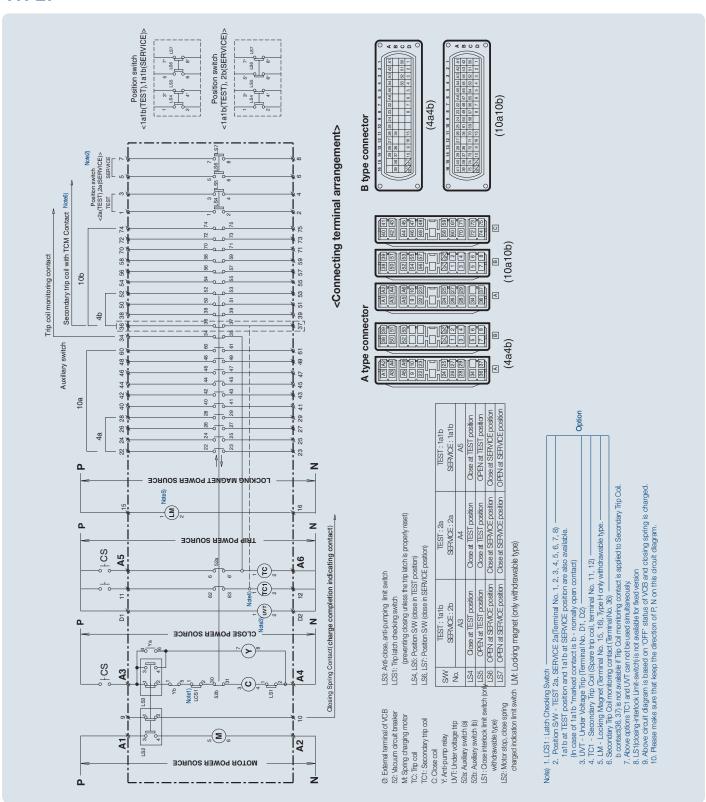




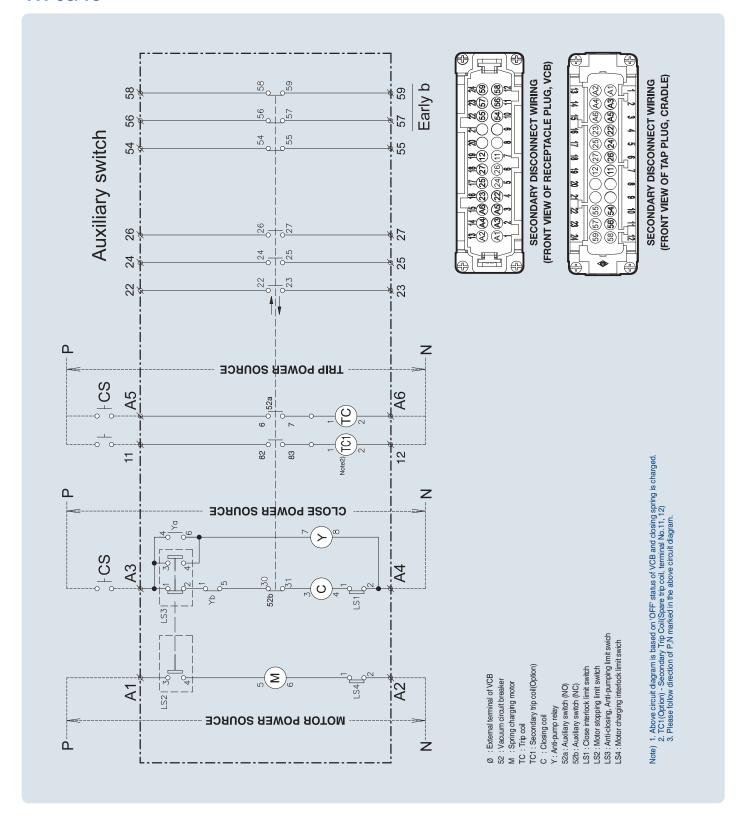

If dimension A in Fig. 1 is less than 120mm B type pallet can be used. In case of more than 120mm C type must be applied.

# Control circuit diagram

Susol


#### **VL-05/15**

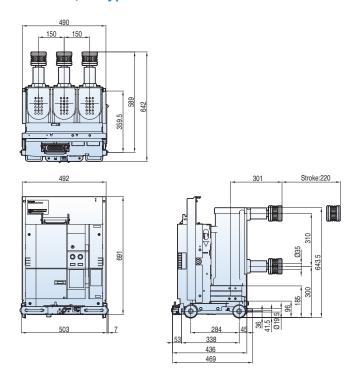



# Control circuit diagram

Susol

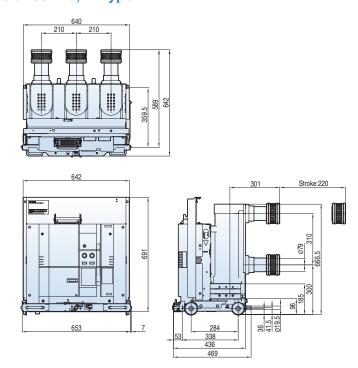
#### **VH-27**




### VH-05/15

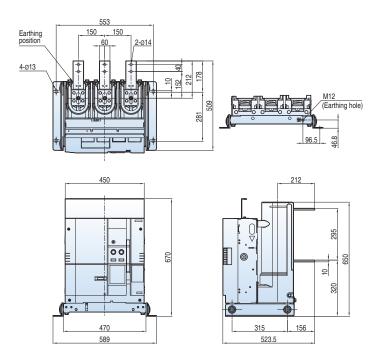


Susol


### 4.76/15kV, 25/31.5kA, 1200A

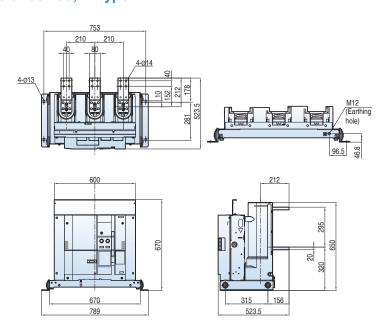
### Phase distance 150, H Type




### 4.76/15kV, 25/31.5kA, 2000A

# Phase distance 210, H Type

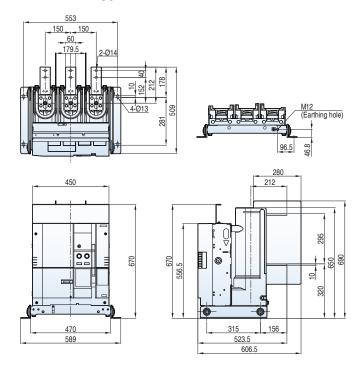



### 4.76kV, 25/31.5kA, 1200A

### Phase distance 150, P Type

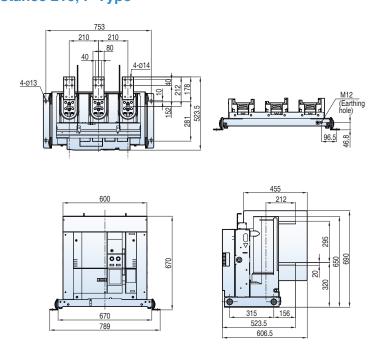


# 4.76kV, 25/31.5kA, 2000A


### Phase distance 150, P Type

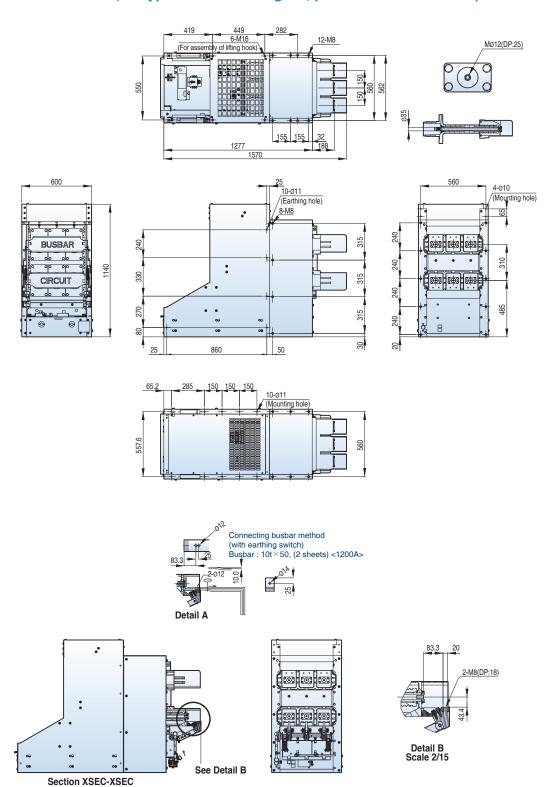


Susol


### 15kV, 25/31.5kA, 1200A

### Phase distance 150, P Type

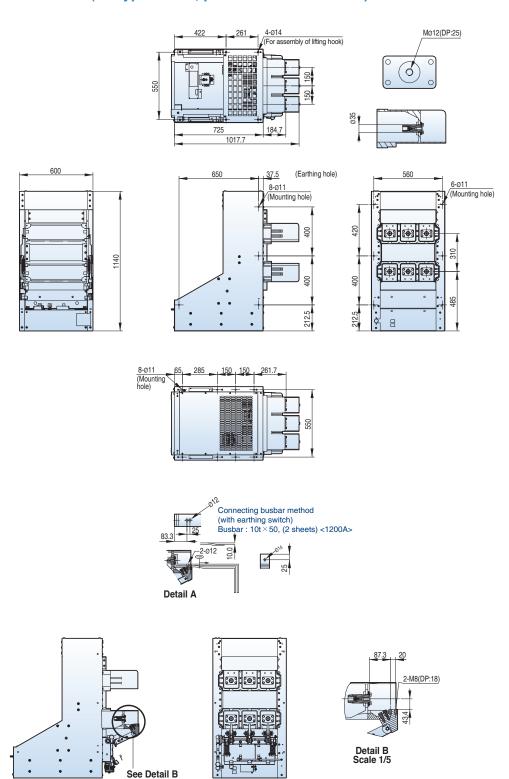



### 15kV, 25/31.5kA, 2000A

### Phase distance 210, P Type

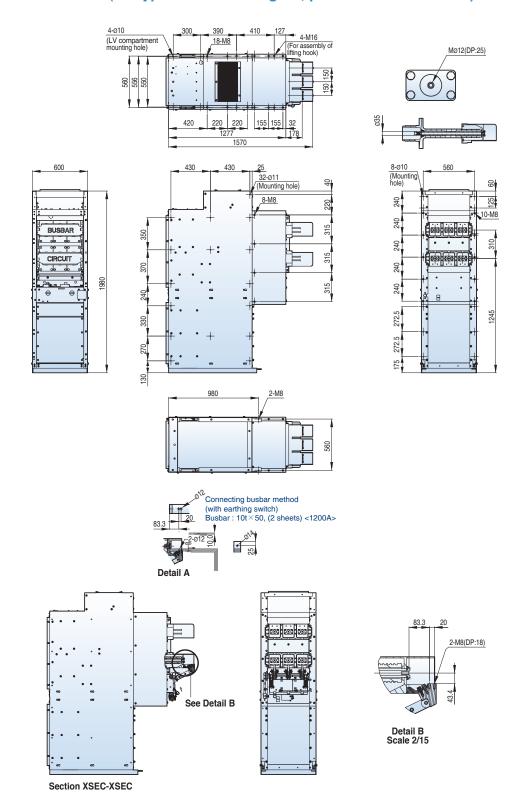


### 4.76/15kV, 25/31.5kA, 1200A


Withdrawable (Ha type cradle Bushing CT, phase distance 150mm)

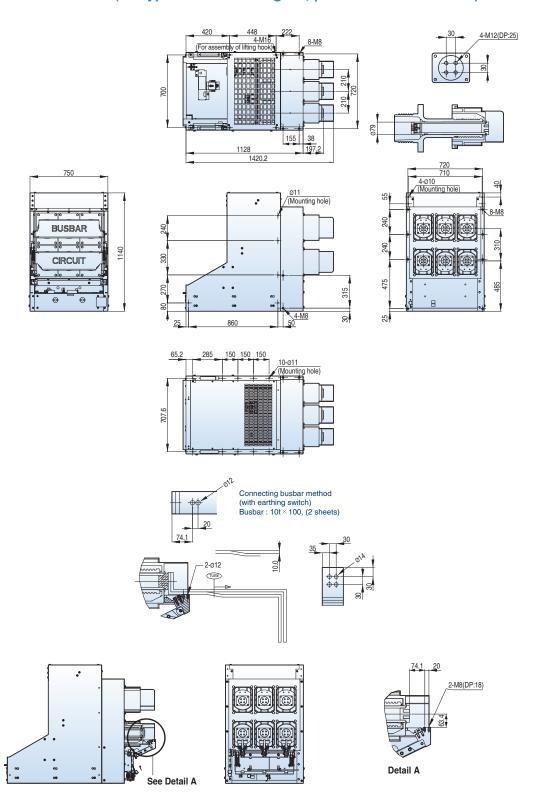


Susol


### 4.76/15kV, 25/31.5kA, 1200A

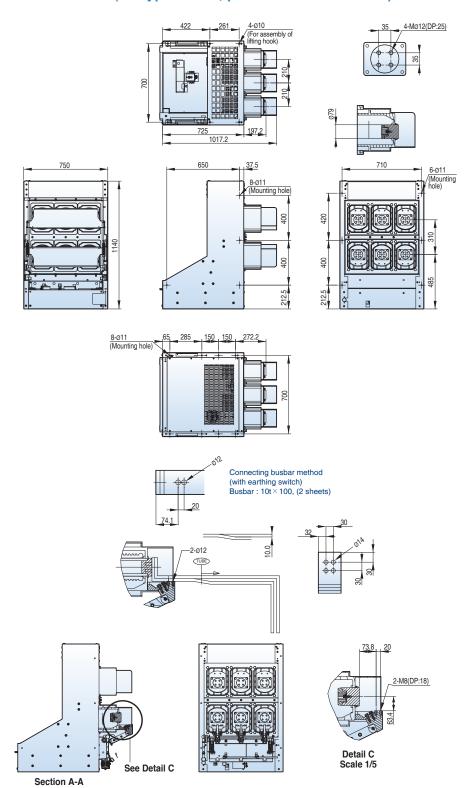
Withdrawable (Ha type cradle, phase distance 150mm)




#### 4.76/15kV, 25/31.5kA, 1200A

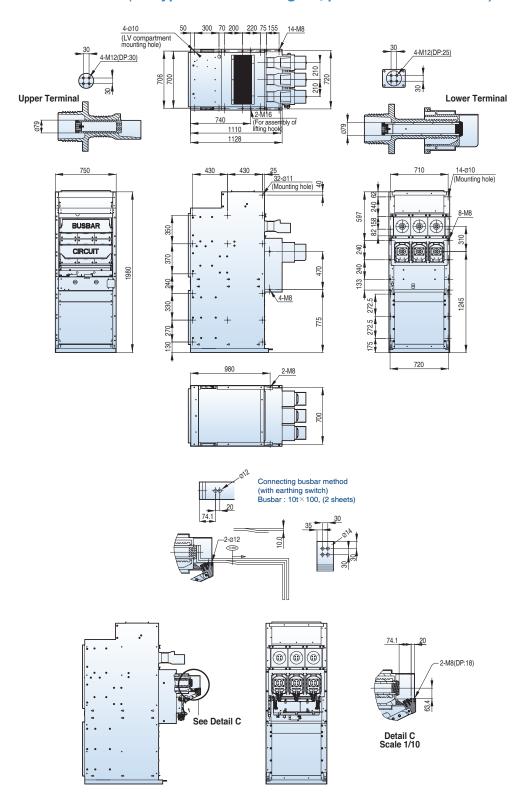
Withdrawable (Hb type cradle Bushing CT, phase distance 150mm)




#### 4.76/15kV, 25/31.5kA, 2000A

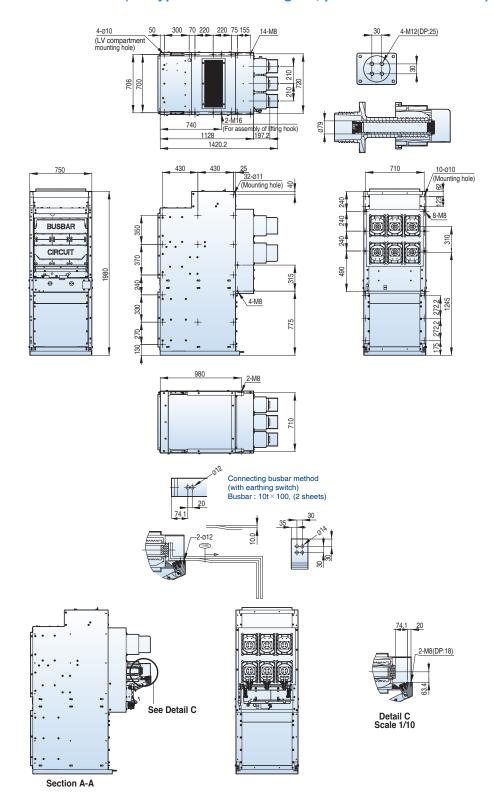
Withdrawable (Ha type cradle Bushing CT, phase distance 210mm)




#### 4.76/15kV, 25/31.5kA, 2000A

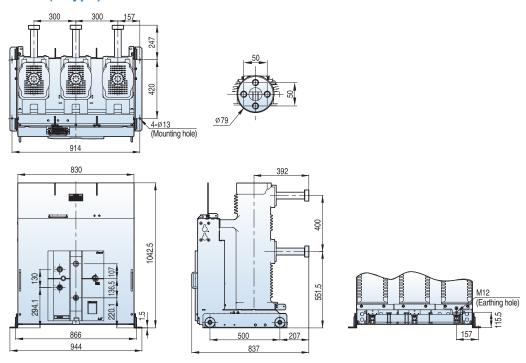
#### Withdrawable (Ha type cradle, phase distance 210mm)



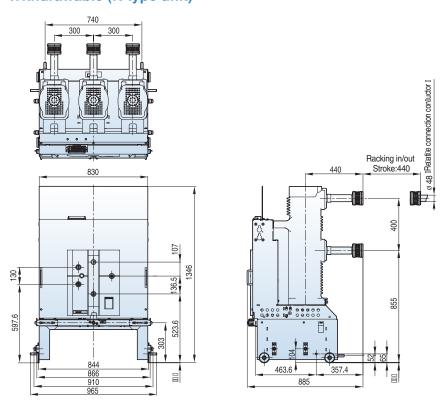

#### 4.76/15kV, 25/31.5kA, 2000A

Withdrawable (Hb type cradle Bushing CT, phase distance 210mm)




#### 4.76/15kV, 25/31.5kA, 2000A

#### Withdrawable (Hb type cradle Bushing CT, phase distance 210mm)



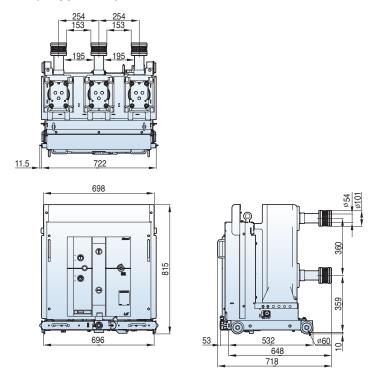

### 27kV, 25kA, 1200/2000A

#### Fixed (P type)



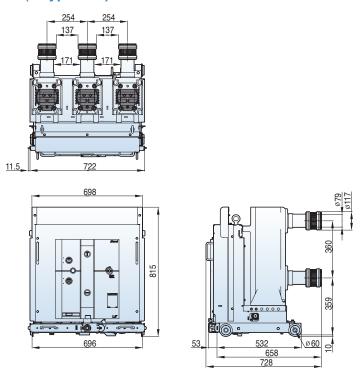
#### Withdrawable (H type unit)




### 27kV, 25kA, 1200/2000A

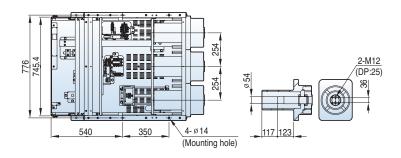
Withdrawable (H type cradle)

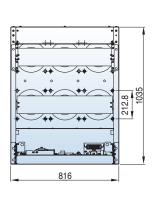


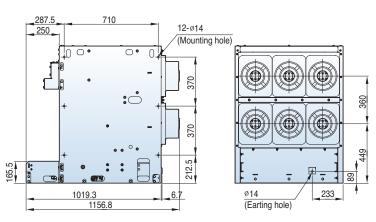

### 4.76kV, 50kA, 1200/2000A I 15kV, 40/50kA, 1200/2000A

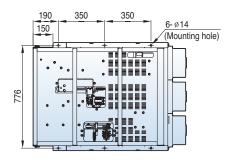
Withdrawable (H type unit)




### 4.76kV, 50kA, 3000A I 15kV, 40/50kA, 3000A

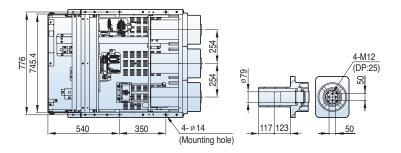

Withdrawable (H type unit)



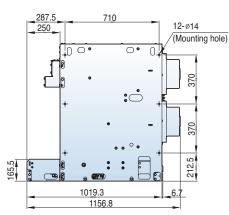


## 4.76kV, 50kA, 1200/2000A I 15kV, 40/50kA, 1200/2000A

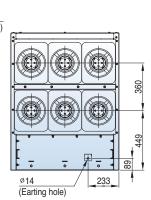
Withdrawable (H type cradle)

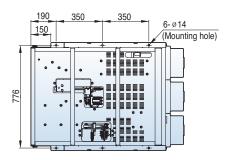






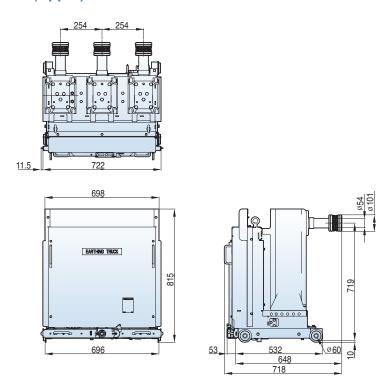





### 4.76kV, 50kA, 3000A I 15kV, 40/50kA, 3000A


Withdrawable (H type cradle)





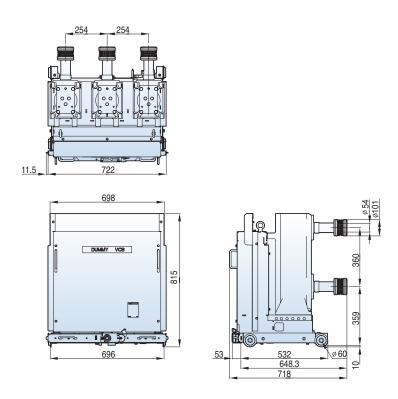






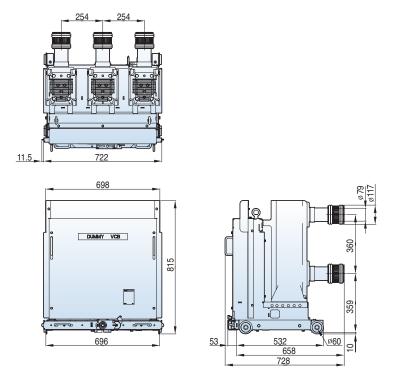

### 4.76kV, 50kA, 1200/2000A I 15kV, 40/50kA, 1200/2000A

#### **Earthing truck(Upper)**




#### **Earthing truck(Lower)**

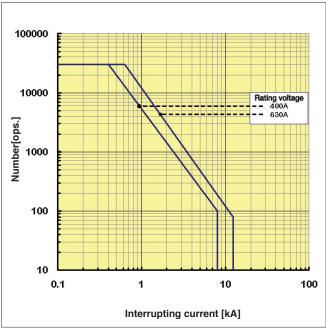



## 4.76kV, 50kA, 1200/2000A I 15kV, 40/50kA, 1200/2000A

**Dummy** 

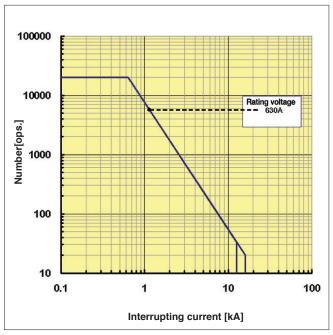


## 4.76kV, 50kA, 3000A I 15kV, 40/50kA, 3000A


**Dummy** 

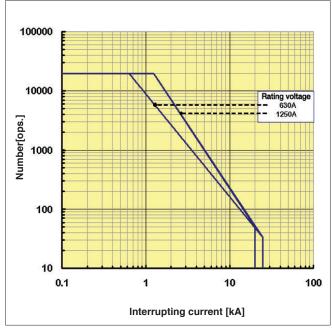


## **Technical data**


#### Susol

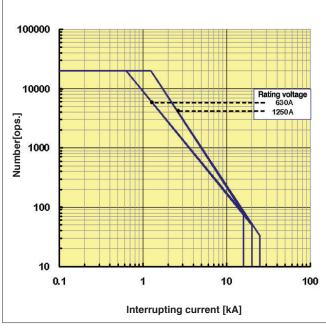
### **Electrical endurance by interrupting current**




VI model LV2 at 7.2kV

• N : Operation numbers • I : Interrupting current




VI model LV4 at 24kV

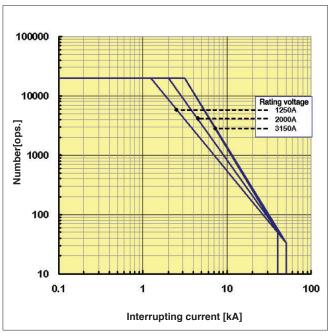
- N : Operation numbers
- I : Interrupting current



VI model LV3 at 7.2kV

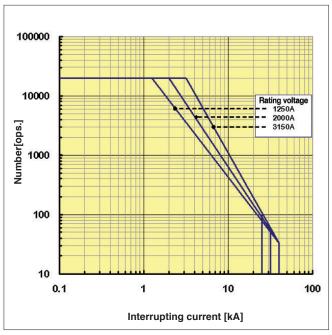
- N : Operation numbers
- I : Interrupting current




VI model LV5 at 17.5kV

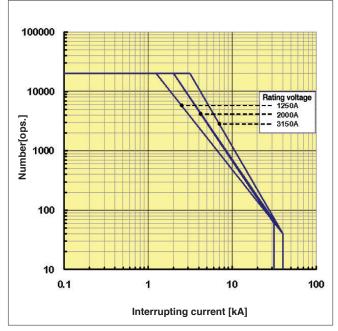
- N : Operation numbers
- I : Interrupting current

## **Technical data**


#### Susol

### **Electrical endurance by interrupting current**




VI model LV8 at 17.5kV

N : Operation numbersI : Interrupting current



VI model LV8 at 36kV

- N : Operation numbers
- I : Interrupting current



VI model LV7-P1 at 24kV

- N : Operation numbers
- I : Interrupting current

Note) 1. Above graphs represent the characteristics of the electrical life of LS Susol VCB.

2. Life characteristics of each model in each rating represents the LOG-LOG graphs.

#### Standard Use Environment for Susol VCB

The operation characteristic of Vacuum Circuit Breaker such as insulation and endurance is often influenced largely by external environment and thus should be applied appropriately with conditions of the place where it is used taken into consideration.

The following values are the limits have been set in accordance with IEC 62271-100 (IEC 62271-1)

#### **Ambient Temperature**

- maximum temperature: +40 °C

- 24-hour average maximum temperature: +35 °C

- minimum temperature: -5 °C

#### **Altitude**

- 1000m or less above sea level

#### **Relative Humidity**

- 24 hours average value: 95% or less - One month average: 90% or less



- If a standard circuit breaker is used in high temperature exceeding 40 °C, you are advised to use it according to the current corrected for each level of ambient temperature in catalog.
- If used in conditions of high humidity, the dielectric strength or electric performance may be degraded.



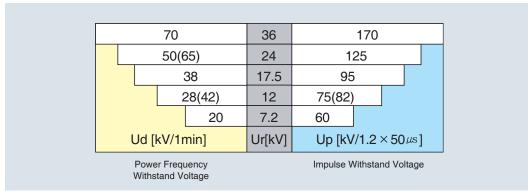
- It is highly recommended to use a dust cover or anti-humid agent if it is used in dusty and humid conditions.
- Excessive vibration may cause a trip breaker such as connection fault or flaw on mechanical parts.



- If it is left ON or OFF for a long time, it is recommended to switch load current on a regular basis.
- It is recommend to put it in the sealed protection if corrosive gas is prevalent.

### **Technical data**

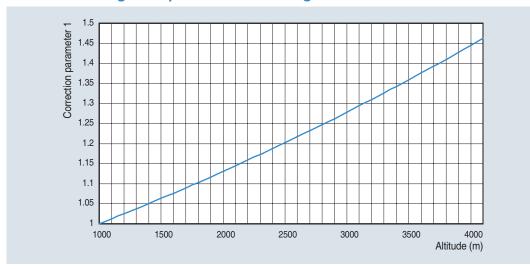
Susol


### **Special Use Environment**

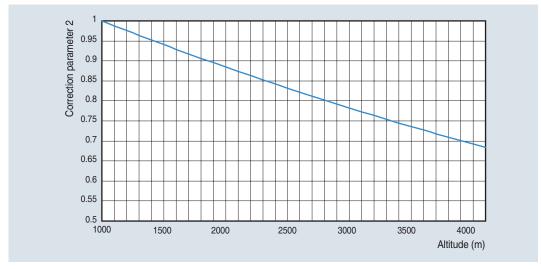
The circuit breaker is designed for use in standard use environment specified in Section 2. 1 of IEC62271-1. Concerning the special use environments as below the special use conditions are required to be considered, thus please contact us in advance.

- where altitude and ambient temperature are out of standard use environment.(-40  $^{\circ}$ C)
- where a strong sea breeze blows
- when usually used in a humid place
- where a lot of steam or oil steam exists
- where explosive, flammable and other harmful gases might permeate the breaker
- In a dusty place
- where abnormal vibration or shock exists
- where a lot of ice and snow exist
- other special conditions

#### Withstand voltage compensation according to altitude


If the breaker is used in areas of sea level higher than 1000m the degradation of insulation performance should be taken into consideration.




<Table 1> Criteria of withstand voltages by rated voltages specified in IEC62271-1

#### **Special Use Environment**

#### Withstand voltage compensation according to altitude



<Fig.1 > withstand voltage correction parameter 1 by altitude (based on a required withstand voltage)



<Fig.2 > withstand voltage correction parameter 2 by altitude (based on a applicable withstand voltage)

### Ex) Selecting a breaker to be used in a place of 2500m above sea level with a rated voltage 7.2kV (correction parameter 1 applied)

- correction parameter at 2500m is 1.2
- criteria of withstand voltage by rated voltage:
- Power Frequency Withstand Voltage (Ud) = 20kV, Impulse Withstand Voltage (Up) = 60kV
- requirements withstand voltage criteria:
- Power Frequency Withstand Voltage (Ud) =  $20 \times 1.2 = 24 \text{kV}$ , Impulse Withstand Voltage (Up) = 72 kV Therefore rated voltage 12kV breaker shall apply to satisfy the required withstand voltage.

### Ex) To apply a breaker with a rated voltage 12kV to the place of 2,500m above sea level (correction parameter 2 applied)

- correction parameter at 2500m is 0.825
- dielectric strength of VCB : Power Frequency Withstand Voltage (Ud) =  $28 \times 0.825 = 23.1 \text{kV}$ , Impulse Withstand Voltage (Up) =  $75 \times 0.825 = 62 \text{kV}/1.2 \times 50~\mu\text{s}$

Therefore above breaker with rated voltage 12kV shall apply to rated voltage system 7.2kV at the altitude.

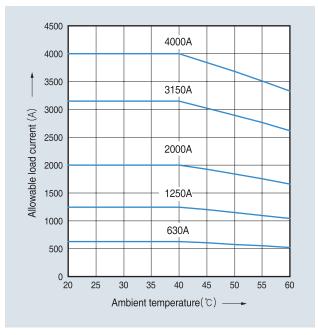
#### Rated current compensation in accordance with ambient temperature

When normal ambient temperature exceeds the temperature specified in the environment the following formula help to select the applicable current.

Ia= Ir 
$$((\boldsymbol{\Theta} \text{max} - \boldsymbol{\Theta} \text{a})/\boldsymbol{\Theta} \text{r})^{1/2}$$

la: allowable continuous current in the actual ambient temperature  $\,\varTheta_{\,a}\,$ 

Ir: rated current at 40 °C ambient temperature


 $\Theta_{\rm max}$ : acceptable overall temperature of the hottest spot  $\Theta_{\rm a}$ : the actual ambient temperature expected at -30°C and 60°C  $\Theta_{\rm r}$ : allowable temperature in the hottest place at rated current

Ex) The calculation of the applicable load current value when a breaker with rated current 2000A is used at 55 °C ambient temperature

 $Ia = 2000 \times ((105-55)/65)^{1/2} = 2000 \times 0.87 = 1754A$ 

| Rated current (A) | Ambient temperature (°C) |      |      |      |      |      |      |      |      |
|-------------------|--------------------------|------|------|------|------|------|------|------|------|
|                   | 20                       | 25   | 30   | 35   | 40   | 45   | 50   | 55   | 60   |
| 4000              | 4000                     | 4000 | 4000 | 4000 | 4000 | 3843 | 3679 | 3508 | 3328 |
| 3150              | 3150                     | 3150 | 3150 | 3150 | 3150 | 3026 | 2898 | 2763 | 2621 |
| 2000              | 2000                     | 2000 | 2000 | 2000 | 2000 | 1922 | 1840 | 1754 | 1664 |
| 1250              | 1250                     | 1250 | 1250 | 1250 | 1250 | 1201 | 1150 | 1096 | 1040 |
| 630               | 630                      | 630  | 630  | 630  | 630  | 605  | 580  | 553  | 524  |

<Table 2> Allowable load current by ambient temperature



<Figure 3> Allowable load current by ambient temperature

# **J**UTURING **S**MART **E**NERGY



- · For your safety, please read user's manual thoroughly before operating.
- · Contact the nearest authorized service facility for examination, repair, or adjustment.
- · Please contact a qualified service technician when you need maintenance. Do not disassemble or repair by yourself!
- · Any maintenance and inspection shall be performed by the personnel having expertise concerned.

LS 15

© 2015.08 LSIS Co.,Ltd. All rights reserved.

www.lsis.com/usa

#### LSIS USA Inc. Chicago Branch

2000 Millbrook Drive Lincolnshire, IL 60069 Tel: 847-941-8240~59 sales.us@lsis.com Fax: 847-941-8259

#### ■ HEAD OFFICE

LS-ro 127 (Hogye-dong) Dongan-gu, Anyang-si, Gyeonggi-Do Korea

Tel. 82-2-2034-4902, 4684, 4429 Fax: 82-2-2034-4555

Specifications in this catalog are subject to change without notice due to continuous product development and improvement.

#### ■ Global Network

#### Overseas Subsidiaries

 LSIS USA Inc. >> Chicago, America
2000Millbrook Drive, Lincolnshire, Chicago, IL60069, United States of America Tel: 1-847-941-8240 / Fax: 1-847-941-8259 / E-mail: seungheonc@lsis.com

· LSIS (Middle East)FZE >> Dubai, U.A.E

LOB 19-205, JAFZA View Tower, Jebel Ali Free Zone, Dubai, United Arab Emirates Tel: 971-4-886-5360 / Fax: 971-4-886-5361 / E-mail: hschoib@lsis.com

LSIS Europe B.V. >> Schiphol-Rijk, Netherlands

1st Floor, Tupoleviaan 48, 1119NZ, Schiphol-Rijk, The Netherlands Tel: 31-20-654-1420 / Fax: 31-20-654-1429 / E-mail: junshickp@lsis.com

• LSIS Japan Co.,Ltd >> Tokyo, Japan

Tokyo Club Building 13F, 2-6, Kasumigaseki 3-chome, Chiyoda-ku, Tokyo, 100-0013 Tel: 81-3-6268-8241 / Fax: 81-3-6268-8240 / E-mail: jschuna@lsis.com

LSIS Dalian Co.,Ltd. >> Dalian, China

No. 15, Liaohexi 3-Road, Economic and Technical Development Zone, Dalian 116600, China Tel: 86-411-8273-7777 / Fax: 86-411-8730-7560 / E-mail: tangyh@lsis.com

• LSIS Wuxi Co.,Ltd. >> WUxi, China 102-A, National High & New Tech Industrial Development Area, Wuxi, Jiangsu, 214028, P.R.China Tel: 86-510-8534-6666 / Fax: 86-510-522-4078 / E-mail: wangzy@lsis.com

• LS-VINA Industrial Systems Co.,Ltd. >> Hanoi, Vietnam

Nguyen Khe, Dong Ahn, Hanoi, Vietnam Tel: 84-4-6275-8055 / Fax: 84-4-3882-0220 / E-mail: sjbaik@lsis.com

#### **Overseas Branches**

#### · LSIS Co.,Ltd. Rep.Office, Vietnam

Gema Dept Tower 18F,6 Le Thanh Ton,District 1,HCM,Vietnam Tel: 84-8-3823-7890 / E-mail: hwyim@lsis.com

LSIS Moscow Office, Russia
 123610, Krasnopresnenskaya, nab, 12, building1, office No.1005, Moscow, Russia
 Tel: 7-495-258-1466, 1467 / Fax: 7-495-258-1466, 1467 / E-mail: jdpark1@lsis.com